Skip to main content
Log in

Experimental characterization of nonlinear static and dynamic behaviors of circular capacitive microplates with initial deflection

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the effects of initial deflection on the static and dynamic behaviors of circular capacitive transducers are experimentally investigated. The obtained results are in good agreement with numerical simulations. It is shown that the initial deflection has a major impact on the static response of the resonator by shifting the pull-in voltage, and on its dynamic response by increasing the resonance frequency and modifying the bifurcation topology from softening to hardening behavior. Moreover, the dynamic behavior of the microplate may display nonlinear periodic and quasiperiodic responses due to geometric and electrostatic nonlinearities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

Raw data were generated using the experimental equipments of FEMTO-ST institute. Derived data supporting the findings of this study are available from the first author Aymen Jallouli on request.

References

  1. Alcheikh, N., Hajjaj, A., Younis, M.I.: Highly sensitive and wide-range resonant pressure sensor based on the veering phenomenon. Sens. Actuators, A 300, 111652 (2019)

    Article  Google Scholar 

  2. Alkharabsheh, S.A., Younis, M.I.: Statics and dynamics of mems arches under axial forces. J. Vib. Acoust. 135(2), 021007 (2013)

    Article  Google Scholar 

  3. Alneamy, A.M., Khater, M.E., Abdel-Aziz, A.K., Heppler, G.R., Abdel-Rahman, E.M.: Electrostatic arch micro-tweezers. Int. J. Non-Linear Mech. 118, 103298 (2020)

    Article  Google Scholar 

  4. Bataineh, A.M., Younis, M.I.: Dynamics of a clamped-clamped microbeam resonator considering fabrication imperfections. Microsyst. Technol. 21(11), 2425–2434 (2015)

    Article  Google Scholar 

  5. Bellaredj, M., Bourbon, G., Walter, V., Le Moal, P., Berthillier, M.: Anodic bonding using soi wafer for fabrication of capacitive micromachined ultrasonic transducers. J. Micromech. Microeng. 24(2), 025009 (2014)

    Article  Google Scholar 

  6. Braun, T., Barwich, V., Ghatkesar, M.K., Bredekamp, A.H., Gerber, C., Hegner, M., Lang, H.P.: Micromechanical mass sensors for biomolecular detection in a physiological environment. Phys. Rev. E 72(3), 031907 (2005)

    Article  Google Scholar 

  7. Brent, R.P.: Algorithms for Minimization without Derivatives. Courier Corporation, USA (2013)

    MATH  Google Scholar 

  8. Celep, Z.: Free flexural vibration of initially imperfect thin plates with large elastic amplitudes. ZAMM-J. Appl. Math. Mech./Z. für Angewandte Mathematik und Mechanik 56(9), 423–428 (1976)

    Article  MATH  Google Scholar 

  9. Celep, Z.: Shear and rotatory inertia effects on the large amplitude vibration of the initially imperfect plates. J. Appl. Mech. 47(3), 662–666 (1980)

    Article  MATH  Google Scholar 

  10. Chu, W.H., Mehregany, M.: A study of residual stress distribution through the thickness of p/sup+/silicon films (thermal oxidation effects). IEEE Trans. Electron Devices 40(7), 1245–1250 (1993)

    Article  Google Scholar 

  11. Comini, E., Faglia, G., Sberveglieri, G.: Solid State Gas Sensing, vol. 20. Springer Science & Business Media, Berlin (2008)

    Google Scholar 

  12. Duffy, S., Bozler, C., Rabe, S., Knecht, J., Travis, L., Wyatt, P., Keast, C., Gouker, M.: Mems microswitches for reconfigurable microwave circuitry. IEEE Microwave Wirel. Compon. Lett. 11(3), 106–108 (2001)

    Article  Google Scholar 

  13. Ganji, B.A., Majlis, B.Y.: Slotted capacitive microphone with sputtered aluminum diaphragm and photoresist sacrificial layer. Microsyst. Technol. 16(10), 1803–1809 (2010)

    Article  Google Scholar 

  14. Hafiz, M.A.A., Kosuru, L., Younis, M.I.: Microelectromechanical reprogrammable logic device. Nature Commun. 7, 11137 (2016)

    Article  Google Scholar 

  15. Hirsch, P., Roberts, S.: The brittle-ductile transition in silicon. Philos. Mag. A 64(1), 55–80 (1991)

    Article  Google Scholar 

  16. Jallouli, A., Kacem, N., Bourbon, G., Le Moal, P., Walter, V., Lardies, J.: Pull-in instability tuning in imperfect nonlinear circular microplates under electrostatic actuation. Phys. Lett. A 380(46), 3886–3890 (2016)

    Article  Google Scholar 

  17. Jallouli, A., Kacem, N., Lardies, J.: Investigations of the effects of geometric imperfections on the nonlinear static and dynamic behavior of capacitive micomachined ultrasonic transducers. Micromachines 9(11), 575 (2018)

    Article  Google Scholar 

  18. Jallouli, A., Kacem, N., Najar, F., Bourbon, G., Lardies, J.: Modeling and experimental characterization of squeeze film effects in nonlinear capacitive circular microplates. Mech. Syst. Signal Process. 127, 68–88 (2019)

    Article  Google Scholar 

  19. Jia, X.L., Yang, J., Kitipornchai, S.: Pull-in instability of geometrically nonlinear micro-switches under electrostatic and casimir forces. Acta Mech. 218(1–2), 161–174 (2011)

    Article  MATH  Google Scholar 

  20. Juillard, J., Bonnoit, A., Avignon, E., Hentz, S., Kacem, N., Colinet, E.: From MEMS to NEMS: Closed-loop actuation of resonant beams beyond the critical Duffing amplitude. In: SENSORS, 2008 IEEE, Lecce, Italy, pp. 510–513 (2008). https://doi.org/10.1109/ICSENS.2008.4716489

  21. Kacem, N., Baguet, S., Hentz, S., Dufour, R.: Nonlinear phenomena in nanomechanical resonators: mechanical behaviors and physical limitations. Mech. Indus. 11(6), 521–529 (2010)

    Google Scholar 

  22. Kacem, N., Hentz, S., Baguet, S., Dufour, R.: Forced large amplitude periodic vibrations of non-linear mathieu resonators for microgyroscope applications. Int. J. Non-Linear Mech. 46(10), 1347–1355 (2011)

    Article  Google Scholar 

  23. Krylov, S., Ilic, B.R., Schreiber, D., Seretensky, S., Craighead, H.: The pull-in behavior of electrostatically actuated bistable microstructures. J. Micromech. Microeng. 18(5), 055026 (2008)

    Article  Google Scholar 

  24. Mallik, S., Chowdhury, D., Chttopadhyay, M.: Development and performance analysis of a low-cost mems microphone-based hearing aid with three different audio amplifiers. Innov. Syst. Softw. Eng. 15(1), 17–25 (2019)

    Article  Google Scholar 

  25. Medina, L., Gilat, R., Krylov, S.: Bistable behavior of electrostatically actuated initially curved micro plate. Sens. Actuators, A 248, 193–198 (2016)

    Article  Google Scholar 

  26. Medina, L., Gilat, R., Krylov, S.: Modeling strategies of electrostatically actuated initially curved bistable micro plates. Int. J. Solids Struct. 118–119, 1–13 (2017). https://doi.org/10.1016/j.ijsolstr.2017.04.027

  27. Medina, L., Gilat, R., Krylov, S.: Bistability criterion for electrostatically actuated initially curved micro plates. Int. J. Eng. Sci. 130, 75–92 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Naeli, K., Brand, O.: Dimensional considerations in achieving large quality factors for resonant silicon cantilevers in air. J. Appl. Phys. 105(1), 014908 (2009)

    Article  Google Scholar 

  29. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods. John Wiley & Sons, New York (2008)

    MATH  Google Scholar 

  30. Ouakad, H.M.: An electrostatically actuated mems arch band-pass filter. Shock Vib. 20(4), 809–819 (2013)

    Article  Google Scholar 

  31. Ouakad, H.M.: Simple and accurate analytical solution to the post-buckling response of an electrostatically actuated mems curled cantilever. Microsyst. Technol. 22(9), 2251–2258 (2016)

    Article  Google Scholar 

  32. Ouakad, H.M., Younis, M.I.: The dynamic behavior of mems arch resonators actuated electrically. Int. J. Non-Linear Mech. 45(7), 704–713 (2010)

    Article  Google Scholar 

  33. Rabenimanana, T., Walter, V., Kacem, N., Le Moal, P., Bourbon, G., Lardiès, J.: Functionalization of electrostatic nonlinearities to overcome mode aliasing limitations in the sensitivity of mass microsensors based on energy localization. Appl. Phys. Lett. 117(3), 033502 (2020)

    Article  Google Scholar 

  34. Rabenimanana, T., Walter, V., Kacem, N., Le Moal, P., Bourbon, G., Lardiès, J.: Mass sensor using mode localization in two weakly coupled mems cantilevers with different lengths: Design and experimental model validation. Sens. Actuators, A 295, 643–652 (2019)

    Article  Google Scholar 

  35. Rhoads, J.F., Shaw, S.W., Turner, K.L.: Nonlinear dynamics and its applications in micro-and nanoresonators. J. Dyn. Sys. Meas. Control. 132(3), 034001 (2010)

    Article  Google Scholar 

  36. Ruzziconi, L., Younis, M.I., Lenci, S.: An efficient reduced-order model to investigate the behavior of an imperfect microbeam under axial load and electric excitation. J. Comput. Nonlinear Dynam. 8(1), 011014 (2013)

    Article  MATH  Google Scholar 

  37. Saghir, S., Bellaredj, M., Ramini, A., Younis, M.I.: Initially curved microplates under electrostatic actuation: theory and experiment. J. Micromech. Microeng. 26(9), 095004 (2016)

    Article  Google Scholar 

  38. Saghir, S., Ilyas, S., Jaber, N., Younis, M.I.: An experimental and theoretical investigation of the mechanical behavior of multilayer initially curved microplates under electrostatic actuation. J. Vib. Acoust. 139(4), 040901 (2017)

    Article  Google Scholar 

  39. Saghir, S., Younis, M.I.: An investigation of the mechanical behavior of initially curved microplates under electrostatic actuation. Acta Mech. 229(7), 2909–2922 (2018)

  40. Sakhaee-Pour, A., Ahmadian, M., Vafai, A.: Applications of single-layered graphene sheets as mass sensors and atomistic dust detectors. Solid State Commun. 145(4), 168–172 (2008)

    Article  Google Scholar 

  41. Sazonova, V.A.: A tunable carbon nanotube resonator. Ph.D. thesis, Cornell University (2006)

  42. Shmulevich, S., Lerman, M., Elata, D.: On the quality of quality-factor in gap-closing electrostatic resonators. J. Micromech. Microeng. 23(11), 115010 (2013)

    Article  Google Scholar 

  43. Thomas, O., Touzé, C., Chaigne, A.: Asymmetric non-linear forced vibrations of free-edge circular plates. part ii: experiments. J. Sound Vib. 265(5), 1075–1101 (2003)

    Article  Google Scholar 

  44. Touzé, C., Thomas, O., Chaigne, A.: Asymmetric non-linear forced vibrations of free-edge circular plates. part 1: Theory. J. Sound Vib. 258(4), 649–676 (2002)

    Article  Google Scholar 

  45. Walter, V., Bourbon, G., Le Moal, P., Kacem, N., Lardiès, J.: Electrostatic actuation to counterbalance the manufacturing defects in a mems mass detection sensor using mode localization. Procedia Engineering 168, 1488 – 1491 (2016). Proceedings of the 30th anniversary Eurosensors Conference – Eurosensors 2016, 4-7. Sepember 2016, Budapest, Hungary

  46. Wang, Z., Ren, J.: Nonlinear coupled vibration of electrically actuated arch with flexible supports. Micromachines 10(11), 729 (2019)

    Article  Google Scholar 

  47. Wang, Z., Ren, J.: Three-to-one internal resonance in mems arch resonators. Sensors 19(8), 1888 (2019)

    Article  Google Scholar 

  48. Williams, M.D., Griffin, B.A., Reagan, T.N., Underbrink, J.R., Sheplak, M.: An aln mems piezoelectric microphone for aeroacoustic applications. J. Microelectromech. Syst. 21(2), 270–283 (2012)

    Article  Google Scholar 

  49. Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics, 20th edn. Springer Science & Business Media, Berlin (2011)

    Book  Google Scholar 

  50. Younis, M.I.: Analytical expressions for the electrostatically actuated curled beam problem. Microsyst. Technol. 21(8), 1709–1717 (2015)

    Article  Google Scholar 

  51. Younis, M.I., Ouakad, H.M., Alsaleem, F.M., Miles, R., Cui, W.: Nonlinear dynamics of mems arches under harmonic electrostatic actuation. J. Microelectromech. Syst. 19(3), 647–656 (2010)

    Article  Google Scholar 

  52. Zhang, Y.: Large deflection of clamped circular plate and accuracy of its approximate analytical solutions. Sci. China Phys. Mech. Astron. 59(2), 624602 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the Bourgogne-Franche-Comté region and the EUR EIPHI program (ANR 17-EURE-0002).

Funding

This project was funded by the Bourgogne-Franche-Comté region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najib Kacem.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

The code has been implemented using the commercial software Matlab.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jallouli, A., Kacem, N., Bourbon, G. et al. Experimental characterization of nonlinear static and dynamic behaviors of circular capacitive microplates with initial deflection. Nonlinear Dyn 103, 2329–2343 (2021). https://doi.org/10.1007/s11071-021-06242-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06242-4

Keywords

Navigation