Skip to main content
Log in

Nonlinear dynamic analysis of supercritical and subcritical Hopf bifurcations in gas foil bearing-rotor systems

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The Hopf bifurcation behavior is an important issue for the nonlinear dynamic analysis of gas foil bearing (GFB)-rotor systems. However, there is a lack of detailed study on different types of Hopf bifurcation and their corresponding characteristics for GFB-rotor systems. This paper is intended to provide a clear and systematic insight into the nonlinear dynamic characteristics of GFB-rotor systems with a supercritical or a subcritical Hopf bifurcation. The onset speed (OS) of instability (i.e., the bifurcation point) for the system is calculated by the linear stability analysis. The periodic solution of the system before or after the bifurcation point is obtained by the shooting method, and its stability is assessed by the Floquet multipliers. The shock stability and the unbalanced response characteristics of the GFB-rotor system with a supercritical or a subcritical Hopf bifurcation are presented. A GFB-rotor system with a supercritical Hopf bifurcation shows better dynamic characteristics than a system with a subcritical Hopf bifurcation. The parameter analysis reveals that the aspect ratio and the foil stiffness of the GFBs have obvious effects on the Hopf bifurcation type, while the loss factor has a relatively small effect. It is remarkable that although a lower foil stiffness increases the OS of instability, the actual speed limit would probably decrease as the Hopf bifurcation changes from a supercritical to a subcritical type. This can contribute to an understanding of the necessity of studies on actual available operating speed based on nonlinear analysis rather than conventional linear analysis for the bearing design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

All data generated during the study are available from the corresponding author by request.

References

  1. Agrawal, G.L.: Foil air/gas bearing technology-an overview, In: ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition, American Society of Mechanical Engineers Digital Collection, pp. 1–11(1997)

  2. Samanta, P., Murmu, N., Khonsari, M.: The evolution of foil bearing technology. Tribol. Int. 135, 305–323 (2019)

    Article  Google Scholar 

  3. DellaCorte, C.: Oil-Free shaft support system rotordynamics: Past, present and future challenges and opportunities. Mech. Syst. Signal Process. 29, 67–76 (2012)

    Article  Google Scholar 

  4. Heshmat, H.: Advancements in the performance of aerodynamic foil journal bearings: High speed and load capability. J. Tribol. 116(2), 287–294 (1994). https://doi.org/10.1115/1.2927211

    Article  Google Scholar 

  5. Lund, J.W.: Calculation of stiffness and damping properties of gas bearings. J. Lubr. Technol. 90(4), 793–803 (1968). https://doi.org/10.1115/1.3601723

    Article  Google Scholar 

  6. Peng, J.-P., Carpino, M.: Calculation of stiffness and damping coefficients for elastically supported gas foil bearings. J. Tribol. 115(1), 20–27 (1993). https://doi.org/10.1115/1.2920982

    Article  Google Scholar 

  7. Vleugels, P., Waumans, T., Peirs, J., Al-Bender, F., Reynaerts, D.: High-speed bearings for micro gas turbines: Stability analysis of foil bearings. J. Micromech. Microeng. 16(9), S282 (2006)

    Article  Google Scholar 

  8. Kim, D.: Parametric studies on static and dynamic performance of air foil bearings with different top foil geometries and bump stiffness distributions. J. Tribol. 129(2), 354–364 (2006). https://doi.org/10.1115/1.2540065

    Article  Google Scholar 

  9. Hoffmann, R., Pronobis, T., Liebich, R.: Non-linear stability analysis of a modified gas foil bearing structure, In: Proceedings of the 9th IFToMM International Conference on Rotor Dynamics, Springer, pp. 1259–1276 (2015)

  10. Hoffmann, R., Liebich, R.: Characterisation and calculation of nonlinear vibrations in gas foil bearing systems-An experimental and numerical investigation. J. Sound Vib. 412, 389–409 (2018)

    Article  Google Scholar 

  11. Larsen, J.S., Santos, I.F., von Osmanski, S.: Stability of rigid rotors supported by air foil bearings: Comparison of two fundamental approaches. J. Sound Vib. 381, 179–191 (2016)

    Article  Google Scholar 

  12. Pronobis, T., Liebich, R.: Comparison of stability limits obtained by time integration and perturbation approach for Gas Foil Bearings. J. Sound Vib. 458, 497–509 (2019)

    Article  Google Scholar 

  13. von Osmanski, S., Larsen, J.S., Santos, I.F.: Multi-domain stability and modal analysis applied to gas foil bearings: Three approaches. J. Sound Vib. 472, 115174 (2020)

    Article  Google Scholar 

  14. Bonello, P.: The extraction of Campbell diagrams from the dynamical system representation of a foil-air bearing rotor model. Mech. Syst. Signal Process. 129, 502–530 (2019)

    Article  Google Scholar 

  15. San Andrés, L., Kim, T.H.: Forced nonlinear response of gas foil bearing supported rotors. Tribol. Int. 41(8), 704–715 (2008)

  16. Bhore, S.P., Darpe, A.K.: Nonlinear dynamics of flexible rotor supported on the gas foil journal bearings. J. Sound Vib. 332(20), 5135–5150 (2013)

    Article  Google Scholar 

  17. Balducchi, F., Arghir, M., Gaudillere, M.: Experimental analysis of the unbalance response of rigid rotors supported on aerodynamic foil bearings, In: ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, American Society of Mechanical Engineers Digital Collection, V07BT32A009 (2014)

  18. Larsen, J.S., Santos, I.F.: On the nonlinear steady-state response of rigid rotors supported by air foil bearings-theory and experiments. J. Sound Vib. 346, 284–297 (2015)

    Article  Google Scholar 

  19. Bonello, P., Pham, H.M.: Nonlinear dynamic analysis of high speed oil-free turbomachinery with focus on stability and self-excited vibration. J. Tribol. 136(4), 216–223 (2014a)

    Article  Google Scholar 

  20. Wang, C.-C., Chen, C.-K.: Bifurcation analysis of self-acting gas journal bearings. J. Trib. 123(4), 755–767 (2001)

    Article  Google Scholar 

  21. Wang, C.-C.: Application of a hybrid numerical method to the nonlinear dynamic analysis of a micro gas bearing system. Nonlinear Dyn. 59(4), 695–710 (2010)

    Article  Google Scholar 

  22. Zhang, J., Kang, W., Liu, Y.: Numerical method and bifurcation analysis of Jeffcott rotor system supported in gas journal bearings, J. Comput. Nonlinear Dynam. 4(1)

  23. Lu, Y., Zhang, Y., Shi, X., Wang, W., Yu, L.: Nonlinear dynamic analysis of a rotor system with fixed-tilting-pad self-acting gas-lubricated bearings support. Nonlinear Dyn. 69(3), 877–890 (2012)

    Article  MathSciNet  Google Scholar 

  24. Zhang, X.-Q., Wang, X.-L., Zhang, Y.-Y.: Non-linear dynamic analysis of the ultra-short micro gas journal bearing-rotor systems considering viscous friction effects. Nonlinear Dyn. 73(1–2), 751–765 (2013)

    Google Scholar 

  25. Zhang, G.-H., Sun, Y., Liu, Z.-S., Zhang, M., Yan, J.-J.: Dynamic characteristics of self-acting gas bearing-flexible rotor coupling system based on the forecasting orbit method. Nonlinear Dyn. 69(1–2), 341–355 (2012)

    Article  Google Scholar 

  26. Rashidi, R., et al.: Preload effect on nonlinear dynamic behavior of a rigid rotor supported by noncircular gas-lubricated journal bearing systems. Nonlinear Dyn. 60(3), 231–253 (2010)

    Article  Google Scholar 

  27. Liu, W., Feng, K., Lyu, P.: Bifurcation and nonlinear dynamic behaviours of a metal mesh damped flexible pivot tilting pad gas bearing system. Nonlinear Dyn. 91(1), 655–677 (2018)

    Article  Google Scholar 

  28. Brancati, R., Russo, M., Russo, R.: On the stability of periodic motions of an unbalanced rigid rotor on lubricated journal bearings. Nonlinear Dyn. 10(2), 175–185 (1996)

    Article  Google Scholar 

  29. Gu, Y., Ma, Y., Ren, G.: Stability and vibration characteristics of a rotor-gas foil bearings system with high-static-low-dynamic-stiffness supports. J. Sound Vib. 397, 152–170 (2017)

    Article  Google Scholar 

  30. Pham, H., Bonello, P.: Efficient techniques for the computation of the nonlinear dynamics of a foil-air bearing rotor system, In: ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, American Society of Mechanical Engineers Digital Collection, V07BT30A011 (2013)

  31. Bonello, P., Pham, H.: The efficient computation of the nonlinear dynamic response of a foil-air bearing rotor system. J. Sound Vib. 333(15), 3459–3478 (2014)

    Article  Google Scholar 

  32. Yang, P., Zhu, K.-Q., Wang, X.-L.: On the non-linear stability of self-acting gas journal bearings. Tribol. Int. 42(1), 71–76 (2009)

    Article  Google Scholar 

  33. Seydel, R.: Practical Bifurcation and Stability Analysis, vol. 5. Springer Science & Business Media, Berlin (2009)

    MATH  Google Scholar 

  34. Myers, C.J.: Bifurcation theory applied to oil whirl in plain cylindrical journal bearings. J. Appl. Mech. 51(2), 244–250 (1984). https://doi.org/10.1115/1.3167607

    Article  MATH  Google Scholar 

  35. Hollis, P., Taylor, D.: Hopf bifurcation to limit cycles in fluid film bearings. J. Tribol. 108(2), 184–189 (1986). https://doi.org/10.1115/1.3261158

    Article  Google Scholar 

  36. Wang, J., Khonsari, M.: Bifurcation analysis of a flexible rotor supported by two fluid-film journal bearings. J. Tribol. 128(3), 594–603 (2006). https://doi.org/10.1115/1.2197842

    Article  Google Scholar 

  37. Chouchane, M., Amamou, A.: Bifurcation of limit cycles in fluid film bearings. Int. J. Non-Linear Mech. 46(9), 1258–1264 (2011)

    Article  Google Scholar 

  38. Chasalevris, A.: Stability and Hopf bifurcations in rotor-bearing-foundation systems of turbines and generators. Tribol. Int. 145, 106154 (2020)

    Article  Google Scholar 

  39. Hamrock, B.J., Schmid, S.R., Jacobson, B.O.: Fundamentals of Fluid Film Lubrication. CRC Press, USA (2004)

    Book  Google Scholar 

  40. Heshmat, H., Walowit, J., Pinkus, O.: Analysis of gas-lubricated foil journal bearings. Asme J. Lubr. Technol 105(4), 647 (1983)

    Article  Google Scholar 

  41. Kim, T.H., San Andrés, L.: Heavily loaded gas foil bearings: a model anchored to test data. J. Eng. Gas Turbines Power 130(1), 82–93 (2008)

    Article  Google Scholar 

  42. Shampine, L.F., Reichelt, M.W.: The MATLAB ODE Suite. SIAM J. Sci. Comput. 18(1), 1–22 (1997)

    Article  MathSciNet  Google Scholar 

  43. Larsen, J.S.: Nonlinear analysis of rotors Supported by air foil journal bearings–theory and experiments, DTU Mechanical Engineering (2014)

  44. Nielsen, B.B., Santos, I.F.: Transient and steady state behaviour of elasto-aerodynamic air foil bearings, considering bump foil compliance and top foil inertia and flexibility: A numerical investigation. Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol. 231(10), 1235–1253 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China [2018YFB2000100] and Tsinghua University Initiative Scientific Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongpeng Gu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest or competing interest with regard to the publication of this manuscript.

Code availability

Custom code.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, R., Gu, Y., Cui, J. et al. Nonlinear dynamic analysis of supercritical and subcritical Hopf bifurcations in gas foil bearing-rotor systems. Nonlinear Dyn 103, 2241–2256 (2021). https://doi.org/10.1007/s11071-021-06234-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06234-4

Keywords

Navigation