Skip to main content
Log in

Crises in a fractional-order piecewise system

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, boundary and interior crises in a fractional-order piecewise system are studied using the extended generalized cell mapping (EGCM) method as a system control parameter varies. A new development of the EGCM method is presented to deal with the non-smooth characteristics of a fractional-order piecewise system. A boundary crisis occurs when a chaotic attractor collides with a regular saddle on the basin boundary leaving behind a chaotic saddle in the place of the original attractor and saddle. With an increase of the system parameter, both the chaotic saddle and the chaotic attractor become larger and finally touch each other in the basin of attraction, which causes the size change of the chaotic attractor suddenly, namely, an interior crisis occurs. Additionally, the routes to chaos and out of chaos for the system are explored by the EGCM method. It is found that the route to chaos is a period-doubling bifurcation, and out of chaos is a saddle-node bifurcation. These results further explain the dynamics evolution of the fractional-order piecewise system from a global perspective. Based on this, it can be demonstrated that the EGCM method is also effective for the global dynamics of fractional-order piecewise systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  2. Stewart, I.: The Lorenz attractor exists. Nature 406, 948–949 (2000)

    Article  Google Scholar 

  3. Chen, G.R., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurcat. Chaos 9(07), 1465–1466 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ueta, T., Chen, G.R.: Bifurcation analysis of Chen’s attractor. Int. J. Bifurcat. Chaos 10(08), 1917–1931 (2000)

    Article  MATH  Google Scholar 

  5. Lü, J.H., Chen, G.R.: A new chaotic attractor coined. Int. J. Bifurcat. Chaos 12(03), 659–661 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Holmes, P.J., Rand, D.A.: The bifurcations of Duffings’ equation: an application of catastrophe theory. J. Sound Vib. 44(2), 237–253 (1976)

    Article  MATH  Google Scholar 

  7. Holmes, P., Whitley, D.: On the attracting set for Duffing’s equation. Phys. D 7, 111–123 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Rossler, O.E.: An equation for continuous chaos. Phys. Lett. A 57(5), 397–398 (1976)

    Article  MATH  Google Scholar 

  9. Rossler, O.E.: An equation for hyperchaos. Phys. Lett. A 71(2–3), 155–157 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grebogi, C., Ott, E., Yorke, J.A.: Crises, sudden changes in chaotic attractors, and transient chaos. Phys. D 7, 181–200 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grebogi, C., Ott, E., Yorke, J.A.: Critical exponents of chaotic transients in nonlinear dynamical systems. Phys. Rev. Lett. 57(11), 1284–1287 (1986)

    Article  MathSciNet  Google Scholar 

  12. Hong, L., Xu, J.X.: Double crises in two-parameter forced oscillators by generalized cell mapping digraph method. Chaos Solit. Fract. 15(5), 871–882 (2003)

    Article  MATH  Google Scholar 

  13. Liu, X.J., Hong, L., Jiang, J.: Global bifurcations in fractional-order chaotic systems with an extended generalized cell mapping method. Chaos 26(8), 084304 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hsu, C.S.: Cell-to-Cell Mapping: A Method of Global Analysis for Nonlinear Systems. Springer-Verlag, New York (1987)

    Book  MATH  Google Scholar 

  15. Hsu, C.S.: Global analysis by cell mapping. Int. J. Bifurcat. Chaos 2(4), 727–771 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hsu, C.S.: Global analysis of dynamical systems using posets and digraphs. Int. J. Bifurcat. Chaos 5(4), 1085–1118 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hong, L., Xu, J.X.: Crises and chaotic transients studied by the generalized cell mapping diagraph method. Phys. Lett. A 262(4–5), 361–375 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hong, L., Sun, J.Q.: Codimension two bifurcations of nonlinear systems driven by fuzzy noise. Phys. D 213, 181–189 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hong, L., Sun, J.Q.: Bifurcations of fuzzy nonlinear dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 11(1), 1–12 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jiang, J., Xu, J.X.: A method of point mapping under cell reference for global analysis of nonlinear dynamical systems. Phys. Lett. A 188(2), 137–145 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jiang, J., Xu, J.X.: An iterative method of point mapping under cell reference for the global analysis of non-linear dynamical systems. J. Sound Vib. 194(4), 605–622 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Xu, W., He, Q., Fang, T., Rong, H.: Global analysis of stochastic bifurcation in duffing system. Int. J. Bifurcat. Chaos 13(10), 3115–3123 (2003)

    Article  MATH  Google Scholar 

  23. Xu, W., He, Q., Fang, T., Rong, H.: Stochastic bifurcation in duffing system subject to harmonic excitation and in presence of random noise. Int. J. Non-Linear Mech. 39(9), 1473–1479 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, X.J., Hong, L., Jiang, J., Tang, D.F., Yang, L.X.: Global dynamics of fractional-order systems with an extended generalized cell mapping method. Nonlinear Dyn. 83, 1419–1428 (2015)

    Article  MathSciNet  Google Scholar 

  25. Wang, L., Xue, L.L., Xu, W., Yue, X.L.: Stochastic P-bifurcation analysis of a fractional smooth and discontinuous oscillator via the generalized cell mapping method. Int. J. Non-linear Mech. 96, 56–63 (2017)

    Article  Google Scholar 

  26. Duarte, F.B., Machado, J.T.: Chaotic phenomena and fractional-order dynamics in the trajectory control of redundant manipulators. Nonlinear Dyn. 29(1–4), 315–342 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, C.P., Deng, W.H., Xu, D.: Chaos synchronization of the Chua system with a fractional order. Phys. A 360(2), 171–185 (2006)

    Article  MathSciNet  Google Scholar 

  28. Petráš, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Higher Education Press, Beijing (2011)

    Book  MATH  Google Scholar 

  29. Agrawal, S.K., Srivastava, M., Das, S.: Synchronization of fractional order chaotic system using active control method. Chaos Solit. Fract. 45(6), 737–752 (2012)

    Article  Google Scholar 

  30. Dadras, S., Momeni, H.R., Qi, G.Y., Wang, Z.L.: Four-wing hyperchaotic attractor generated from a new 4D system with one equilibrium and its fractional-order form. Nonlinear Dyn. 67, 1161–1173 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hegazi, A.S., Ahmed, E., Matouk, A.E.: On chaos control and synchronization of the commensurate fractional order Liu system. Commun. Nonlinear Sci. Numer. Simul. 18(5), 1193–1202 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mohammad, M.A., Saleh, S.D., Mohammad, T.H.B., Mohammad, S.T.: Non-fragile control and synchronization of a new fractional-order chaotic system. Appl. Math. Comput. 222(1), 712–721 (2013)

    MathSciNet  MATH  Google Scholar 

  33. Donato, C., Giuseppe, G.: Chaos in a new fractional-order system without equilibrium points. Commun. Nonlinear Sci. Numer. Simul. 19(9), 2919–2927 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Guan J.B., Wang, K.H.: Sliding mode control and modified generalized projective synchronization of a new fractional-order chaotic system. Math. Probl. Eng. 2015, Article ID 941654 (2015).

  35. Huo, J.J., Zhao, H.Y., Zhu, L.H.: The effect of vaccines on backward bifurcation in a fractional order HIV model. Nonlinear Anal- Real 26, 289–305 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Gunay, E.: MLC circuit in the frame of CNN. Int. J. Bifurcat. Chaos 20, 3267–3274 (2010)

    Article  Google Scholar 

  37. Venkatesan, A., Murali, K., Lakshmanan, M.: Birth of strange nonchaotic attractors through type III intermittency. Phys. Lett. A 259, 246–253 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  38. Palanivel, J., Suresh, K., Sabarathinam, S., Thamilmaran, K.: Chaos in a low dimensional fractional order nonautonomous nonlinear oscillator. Chaos Solit. Fract. 95, 33–41 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  40. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd, revised Springer-Verlag, Berlin (1993)

    MATH  Google Scholar 

  41. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer-Verlag, Berlin (1991)

    Book  MATH  Google Scholar 

  42. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  43. Charef, A., Sun, H.H., Tsao, Y.Y., Onaral, B.: Fractal system as represented by singularity function. IEEE Trans. Autom. Control 37(9), 1465–1470 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (Nos. 11702194 and 11702195) and the Natural Science Preparatory Study Foundation of Xi’an University of Posts and Telecommunications (No. 106/205020030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Hong, L., Tang, D. et al. Crises in a fractional-order piecewise system. Nonlinear Dyn 103, 2855–2866 (2021). https://doi.org/10.1007/s11071-021-06213-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06213-9

Keywords

Navigation