Skip to main content
Log in

Higher-order saddle potentials, nonlinear curl forces, trapping and dynamics

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The position-dependent non-conservative forces are called curl forces introduced recently by Berry and Shukla (J Phys A 45:305201, 2012). The aim of this paper is to study mainly the curl force dynamics of non-conservative central force \(\ddot{x} = -xg(x,y)\) and \(\ddot{y} = -yg(x,y)\) connected to higher-order saddle potentials. In particular, we study the dynamics of the type \(\ddot{x}_i = -x_ig \big (\frac{1}{2}(x_{1}^{2} - x_{2}^{2}) \big )\), \(i=1,2\) and its application towards the trapping of ions. We also study the higher-order saddle surfaces, using the pair of higher-order saddle surfaces and rotated saddle surfaces by constructing a generalized rotating shaft equation. The complex curl force can also be constructed by using this pair. By the direct computation, we show that all these motions of higher-order saddles are completely integrable due to the existence of two conserved quantities, viz. energy function and the Fradkin tensor. The Newtonian system \(\ddot{x} = {{\mathcal {X}}}(x,y)\), \(\ddot{y} = {{\mathcal {Y}}}(x,y)\) has also been studied with an energy like first integral \(I(\mathbf{x}, \dot{\mathbf{x}}) = \frac{1}{2}\dot{\mathbf{x}}^TM(\mathbf{x})\dot{\mathbf{x}} + U(\mathbf{x})\), where \(M(\mathbf{x})\) is a \((2 \times 2)\) matrix of which the components are polynomials of degree less than or equal to two and the condition on \({{\mathcal {X}}}\) and \({{\mathcal {Y}}}\) for which the curl is non-vanishing is also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

The simulation materials which support the findings of this study are available from the corresponding author (SG) upon reasonable request via mail.

References

  1. Berry, M.V., Shukla, P.: Classical dynamics with curl forces, and motion driven by time-dependent flux. J. Phys. A 45, 305201 (2012)

    Article  MathSciNet  Google Scholar 

  2. Berry, M.V., Shukla, P.: Hamiltonian curl forces. Proc. R. Soc. A 471, 20150002 (2015)

    Article  MathSciNet  Google Scholar 

  3. Berry, M.V., Shukla, P.: Physical curl forces: dipole dynamics near optical vortices. J. Phys. A 46, 422001 (2013)

    Article  MathSciNet  Google Scholar 

  4. Chaumet, P.C., Nieto-Vesperinas, M.: Time-averaged total force on a dipolar sphere in an electromagnetic field. Opt. Lett. 25, 1065–1067 (2013)

    Article  Google Scholar 

  5. Albaladejo, S., Marqués, M.I., Laroche, M., Séenz, J.J.: Scattering forces from the curl of the spin angular momentum. Phys. Rev. Lett. 102, 113602 (2009)

    Article  Google Scholar 

  6. Shimizu, Y., Sasada, H.: Mechanical force in laser cooling and trapping. Am. J. Phys. 66, 960–967 (1998)

    Article  Google Scholar 

  7. Gutzwiller, M.C.: The anistropic kepler problem in two dimensions. J. Math. Phys. 14, 139–152 (1973)

    Article  Google Scholar 

  8. Devaney, R.L.: Nonregularizability of the anisotropic Kepler problem. J. Diff. Eqns. 29, 253 (1978)

    Article  MathSciNet  Google Scholar 

  9. Ghose-Choudhury, A., Guha, P., Paliathanasis, A., Leach, P.G.L.: Noetherian symmetries of noncentral forces with drag term. Int. J. Geom. Methods Mod. Phys. 14, 1750018 (2017)

    Article  MathSciNet  Google Scholar 

  10. Guha, P.: Generalized Emden–Fowler equations in noncentral curl forces and first integrals. Acta Mech. 231, 815–825 (2020)

    Article  MathSciNet  Google Scholar 

  11. Guha, P.: Saddle in linear curl forces, cofactor systems and holomorphic structure. Eur. Phys. J. Plus 133, 536 (2018)

    Article  Google Scholar 

  12. Guha, P.: Curl forces and their role in optics and ion trapping. Eur. Phys. J. D 74, 99 (2020)

    Article  Google Scholar 

  13. Kirillov, O., Levi, M.: Rotating saddle trap as foucault’s pendulum. Am. J. Phys. 84, 26 (2016)

    Article  Google Scholar 

  14. Kirillov, O., Levi, M.: Rotating saddle trap: a coriolis force in an inertial frame. Nonlinearity 30, 1109–1119 (2017)

    Article  MathSciNet  Google Scholar 

  15. Ghose-Choudhury, A., Guha, P.: Hamiltonian description of nonlinear curl forces from cofactor systems. Acta Mech. 230, 2267–2277 (2019)

    Article  MathSciNet  Google Scholar 

  16. Landau, L.D., Lifshitz, E.M.: Mechanics, vol. 1, 1st edn. Pergamon Press, Oxford (1960)

    MATH  Google Scholar 

  17. Ghosh, P.K.: Ion Traps, pp. 12–18. Clarendon Press, Oxford (1995)

    Google Scholar 

  18. Paul, W.: Electromagnetic traps for charged and neutral particles. Rev. Mod. Phys. 62, 531 (1990)

    Article  Google Scholar 

  19. Stephenson, A.Xx: On induced stability. Lond. Edinb. Dublin Philos. Mag. J. Sci. 15(86), 233–236 (1908). https://doi.org/10.1080/14786440809463763

    Article  MATH  Google Scholar 

  20. Kapitsa, P.L.: Dynamic stability of a pendulum when its point of suspension vibrates. Soviet Phys. JETP. 21, 588–592 (1951)

    MathSciNet  Google Scholar 

  21. Kapitsa, P.L.: Pendulum with a vibrating suspension. Usp. Fiz. Nauk. 44, 7–15 (1951)

    Article  Google Scholar 

  22. Krechetnikov, R., Marsden, J.E.: Dissipation-induced instabilities in finite dimensions. Rev. Mod. Phys. 79(2), 519–553 (2007). https://doi.org/10.1103/revmodphys.79.519

    Article  MathSciNet  MATH  Google Scholar 

  23. Byrne, J., Farago, P.S.: On the production of polarized electrons by spin exchange collisions. Proc. Phys. Soc. 86, 801–815 (1965)

    Article  Google Scholar 

  24. Grf̈f, B.G., Klempt, E.: On the production of polarized electrons by spin exchange collisions. Z. Naturforschung 22a, 1960–1962 (1967)

    Article  Google Scholar 

  25. Sokolov, A.A., Pavlenko, Y.G.: Induced and spontaneous emission in crossed fields. Opt. Spectrosc. 22, 1 (1967)

    Google Scholar 

  26. Zhang, P.M., Cariglia, M., Duval, C., Elbistan, M., Gibbons, G.W., Horvathy, P.: Ion traps and the memory effect for periodic gravitational waves. Phys. Rev. D 98, 044037 (2018)

    Article  MathSciNet  Google Scholar 

  27. Kapitsa, P.L.: Stability and transition through the critical speed of fast rotating shafts with friction. Zhur. Tekhn. Fiz. 9, 124–147 (1939)

    Google Scholar 

  28. Merkin D. R.: Gyroscopic systems. Nauka, Moscow, in Russian (first edition-1956) (1974)

  29. Merkin, D.R.: Introduction to the theory of stability. Springer, New York (1997)

    Google Scholar 

  30. de Oliveira Cesar, M., Barone-Netto, A.: Stability of some central forces. Nonlinear Differ. Equ. Appl 6, 289–296 (1999)

    Article  MathSciNet  Google Scholar 

  31. de Oliveira Cesar, M., Barone-Netto, A.: Some central forces-stability. Qual. Theory Dyn. Syst. 6, 1–8 (2005)

    Article  MathSciNet  Google Scholar 

  32. Barone-Netto, A., de Oliveira Cesar, M.: Non-conservative positional systems-stability. Dyn. Stab. Syst. 2, 213–221 (1988)

    MATH  Google Scholar 

  33. Caetano, M.F., de Pera Garcia, M .V.: On stability of some newton systems. Qual. Theory Dyn. Syst. 18, 1001–1011 (2019)

    Article  MathSciNet  Google Scholar 

  34. Berry, M.: Classical and quantum complex Hamiltonian curl forces. 6:1–8 (2020) (Preprint)

  35. Darboux, G.: Sur un probléme de mécanique. Arch. Néerlandaises Sci. 6, 371–376 (1901)

    MATH  Google Scholar 

  36. Whittakar, E.T.: Analytical Dynamics of Particles and Rigid Bodies, pp. 109–111. Cambridge University Press, Cambridge (1927)

    Google Scholar 

  37. Marshall, I., Wojciechowski, S.: When is a hamiltonian system separable? J. Math. Phys. 6, 1338–1346 (1988)

    Article  MathSciNet  Google Scholar 

  38. Deriviére, S., Kaczynski, T., Vallerand, P.O.: On the decomposition and local degree of multiple saddles. Annales Sci. Math. Qué 33(1), 45–62 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

One of the authors PG is immensely grateful to Professor Sir Michael Berry for his valuable comments, numerous discussions and constant encouragement. He is also thankful to Professors Anindya Ghose-Choudhury, Jayanta Bhattacharjee and Pragya Shukla for their interest and valuable inputs. SG would like to acknowledge Dr. Pankaj Kumar Shaw for his valuable discussion regarding the phase space plots. Finally, thanks are extended to the anonymous referees for their careful reading of the manuscript and for making insightful comments towards the betterment of the present work.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to this work.

Corresponding author

Correspondence to Sudip Garai.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garai, S., Guha, P. Higher-order saddle potentials, nonlinear curl forces, trapping and dynamics. Nonlinear Dyn 103, 2257–2272 (2021). https://doi.org/10.1007/s11071-021-06212-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06212-w

Keywords

Mathematics Subject Classification

Navigation