Skip to main content
Log in

Development of composite sub-step explicit dissipative algorithms with truly self-starting property

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper focuses mainly on the development of composite sub-step explicit algorithms for solving nonlinear dynamic problems. The proposed explicit algorithms are required to achieve the truly self-starting property, so avoiding computing the initial acceleration vector, and the controllable numerical dissipation at the bifurcation point, so eliminating spurious high-frequency components. With these two requirements, the single and two sub-step explicit algorithms with truly self-starting property and dissipation control are developed and analyzed. The present single sub-step algorithm shares the same spectral accuracy as the known Tchamwa–Wielgosz scheme, but the former possesses some advantages for solving wave propagation problems. The present two sub-step algorithm provides a larger stability limit, twice than those of single step schemes, due to explicit solutions of linear systems twice within each time increment. Numerical examples are also simulated to show numerical performance and superiority of two novel explicit methods over other explicit schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover Publications, Dover Civil and Mechanical Engineering, Mineola (2000)

    MATH  Google Scholar 

  2. Bathe, K.J.: Finite Element Procedures, 2nd edn. Prentice Hall, Englewood Cliffs (1996)

    MATH  Google Scholar 

  3. Chopra, A.K.: Dynamics of Structures: Theory and Applications to Earthquake Engineering. Prentice-Hall International Series in Civil Engineering and Engineering Mechanics, 4th edn. Prentice Hall, Upper Saddle River (2011)

    Google Scholar 

  4. Newmark, N.M.: A method of computation for structural dynamics. J. Eng. Mech. Div. 85(3), 67–94 (1959)

    Google Scholar 

  5. Shao, H., Cai, C.: A three parameters algorithm for numerical integration of structural dynamic equations. Chin. J. Appl. Mech. 5(4), 76–81 (1988)

    Google Scholar 

  6. Chung, J., Hulbert, G.M.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. J. Appl. Mech. 60(2), 371–375 (1993)

    MathSciNet  MATH  Google Scholar 

  7. Wood, W., Bossak, M., Zienkiewicz, O.: An alpha modification of Newmark’s method. Int. J. Numer. Methods Eng. 15(10), 1562–1566 (1980)

    MathSciNet  MATH  Google Scholar 

  8. Hilber, H.M., Hughes, T.J.R., Taylor, R.L.: Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq. Eng. Struct. Dyn. 5(3), 283–292 (1977)

    Google Scholar 

  9. Wilson, E.L., Farhoomand, I., Bathe, K.J.: Nonlinear dynamic analysis of complex structures. Earthq. Eng. Struct. Dyn. 1(3), 241–252 (1972)

    Google Scholar 

  10. Hulbert, G.M., Chung, J.: Explicit time integration algorithms for structural dynamics with optimal numerical dissipation. Comput. Methods Appl. Mech. Eng. 137(2), 175–188 (1996)

    MathSciNet  MATH  Google Scholar 

  11. Chung, J., Lee, J.M.: A new family of explicit time integration methods for linear and non-linear structural dynamics. Int. J. Numer. Methods Eng. 37(23), 3961–3976 (1994)

    MathSciNet  MATH  Google Scholar 

  12. Tamma, K.K., Namburu, R.R.: A robust self-starting explicit computational methodology for structural dynamic applications: architecture and Representations. Int. J. Numer. Methods Eng. 29(7), 1441–1454 (1990)

    Google Scholar 

  13. Li, J., Li, X., Yu, K.: Enhanced studies on the composite sub-step algorithm for structural dynamics: the Bathe-like algorithm. Appl. Math. Model. 80, 33–64 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Noh, G., Bathe, K.J.: The Bathe time integration method with controllable spectral radius: the \(\rho _\infty \)-Bathe method. Comput. Struct. 212, 299–310 (2019)

    Google Scholar 

  15. Li, J., Yu, K.: An alternative to the Bathe algorithm. Appl. Math. Model. 69, 255–272 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Li, J., Yu, K., He, H.: A second-order accurate three sub-step composite algorithm for structural dynamics. Appl. Math. Model. 77, 1391–1412 (2020)

    MathSciNet  MATH  Google Scholar 

  17. Wen, W., Deng, S., Wang, N., Duan, S., Fang, D.: An improved sub-step time-marching procedure for linear and nonlinear dynamics with high-order accuracy and high-efficient energy conservation. Appl. Math. Model. 90, 78–100 (2021)

    MathSciNet  Google Scholar 

  18. Kim, W.: An improved implicit method with dissipation control capability: the simple generalized composite time integration algorithm. Appl. Math. Model. 81, 910–930 (2020)

    MathSciNet  Google Scholar 

  19. Li, J., Yu, K.: A truly self-starting implicit family of integration algorithms with dissipation control for nonlinear dynamics. Nonlinear Dyn. 102, 2503–2530 (2020)

    Google Scholar 

  20. Hilber, H.M., Hughes, T.J.R.: Collocation, dissipation and ‘overshoot’ for time integration schemes in structural dynamics. Earthq. Eng. Struct. Dyn. 6(1), 99–117 (1978)

    Google Scholar 

  21. Li, J., Yu, K., Li, X.: An identical second-order single step explicit integration algorithm with dissipation control for structural dynamics. Int. J. Numer. Methods Eng. (2020). https://doi.org/10.1002/nme.6574

    Article  Google Scholar 

  22. Cook, R.D., Malkus, D.S., Plesha, M.E., Witt, R.J.: Concepts and Applications of Finite Element Analysis, 4th edn. Wiley, Hoboken (2001)

    Google Scholar 

  23. Borst, R.D., Crisfield, M., Remmers, J., Verhoosel, C.: Nonlinear Finite Element Analysis of Solids and Structures. Wiley Series in Computational Mechanics, 2nd edn. Wiley, Hoboken (2012)

    MATH  Google Scholar 

  24. Hughes, T.J.R., Liu, W.K.: Implicit–explicit finite elements in transient analysis: stability theory. J. Appl. Mech. 45(2), 371–374 (1978)

    MATH  Google Scholar 

  25. Miranda, I., Ferencz, R.M., Hughes, T.J.R.: An improved implicit–explicit time integration method for structural dynamics. Earthq. Eng. Struct. Dyn. 18(5), 643–653 (1989)

    Google Scholar 

  26. Noh, G., Bathe, K.J.: An explicit time integration scheme for the analysis of wave propagations. Comput. Struct. 129, 178–193 (2013)

    Google Scholar 

  27. Kim, W., Reddy, J.N.: Novel explicit time integration schemes for efficient transient analyses of structural problems. Int. J. Mech. Sci. 172, 105429 (2020)

    Google Scholar 

  28. Kim, W.: A new family of two-stage explicit time integration methods with dissipation control capability for structural dynamics. Eng. Struct. 195, 358–372 (2019)

    Google Scholar 

  29. Rezaiee-Pajand, M., Karimi-Rad, M.: An accurate predictor–corrector time integration method for structural dynamics. Int. J. Steel Struct. 17(3), 1033–1047 (2017)

    Google Scholar 

  30. Namburu, R.R., Tamma, K.K.: A generalized \(\gamma _s\)-family of self-starting algorithms for computational structural dynamics. AIAA J. (1992). https://doi.org/10.2514/6.1992-2330

    Article  Google Scholar 

  31. Soares, D., Jr.: An enhanced explicit time-marching technique for wave propagation analysis considering adaptive time integrators. Comput. Methods Appl. Mech. Eng. 363, 112882 (2020)

    MathSciNet  MATH  Google Scholar 

  32. Soares, D., Jr.: An explicit family of time marching procedures with adaptive dissipation control. Int. J. Numer. Methods Eng. 100(3), 165–182 (2014a)

    MathSciNet  MATH  Google Scholar 

  33. Zhang, H.M., Xing, Y.F.: Two novel explicit time integration methods based on displacement–velocity relations for structural dynamics. Comput. Struct. 221, 127–141 (2019)

    Google Scholar 

  34. Rio, G., Soive, A., Grolleau, V.: Comparative study of numerical explicit time integration algorithms. Adv. Eng. Softw. 36(4), 252–265 (2005)

    MATH  Google Scholar 

  35. Maheo, L., Rio, G., Grolleau, V.: On the use of some numerical damping methods of spurious oscillations in the case of elastic wave propagation. Mech. Res. Commun. 38(2), 81–88 (2011)

    MATH  Google Scholar 

  36. Maheo, L., Grolleau, V., Rio, G.: Numerical damping of spurious oscillations: a comparison between the Bulk-Viscosity method and the Tchamwa–Wielgosz dissipative explicit scheme. Comput. Mech. 51(1), 109–128 (2013)

    MathSciNet  MATH  Google Scholar 

  37. Li, J., Yu, K., Li, X.: A novel family of controllably dissipative composite integration algorithms for structural dynamic analysis. Nonlinear Dyn. 96(4), 2475–2507 (2019)

    Google Scholar 

  38. Yu, K.: A new family of generalized-\(\alpha \) time integration algorithms without overshoot for structural dynamics. Earthq. Eng. Struct. Dyn. 37(12), 1389–1409 (2008)

    Google Scholar 

  39. Li, J., Yu, K.: A novel family of composite sub-step algorithms with desired numerical dissipations for structural dynamics. Arch. Appl. Mech. 90, 737–772 (2019)

    Google Scholar 

  40. Bathe, K.J., Baig, M.M.I.: On a composite implicit time integration procedure for nonlinear dynamics. Comput. Struct. 83(31–32), 2513–2524 (2005)

    MathSciNet  Google Scholar 

  41. Hughes, T.J.R., Liu, W.K.: Implicit–explicit finite elements in transient analysis: implementation and numerical examples. J. Appl. Mech. 45(2), 375–378 (1978)

    MATH  Google Scholar 

  42. Soares, D., Jr.: A simple and effective new family of time marching procedures for dynamics. Comput. Methods Appl. Mech. Eng. 283, 1138–1166 (2014)

    MathSciNet  MATH  Google Scholar 

  43. Wen, W., Duan, S., Yan, J., Ma, Y., Wei, K., Fang, D.: A quartic B-spline based explicit time integration scheme for structural dynamics with controllable numerical dissipation. Comput. Mech. 59(3), 403–418 (2017)

    MathSciNet  MATH  Google Scholar 

  44. Chang, S.Y.: Dissipative, noniterative integration algorithms with unconditional stability for mildly nonlinear structural dynamic problems. Nonlinear Dyn. 79(2), 1625–1649 (2015)

    Google Scholar 

  45. Chang, S.Y.: A dual family of dissipative structure-dependent integration methods for structural nonlinear dynamics. Nonlinear Dyn. 98(1), 703–734 (2019)

    Google Scholar 

  46. He, H., Tang, H., Yu, K., Li, J., Yang, N., Zhang, X.: Nonlinear aeroelastic analysis of the folding fin with freeplay under thermal environment. Chin. J. Aeronaut. 33(9), 2357–2371 (2020)

    Google Scholar 

  47. He, H., Yu, K., Tang, H., Li, J., Zhou, Q., Zhang, X.: Vibration experiment and nonlinear modelling research on the folding fin with freeplay. Chin. J. Theor. Appl. Mech. 51(9), 2357–2371 (2019)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 11372084). The helpful and constructive comments by three referees have led to the improvements of this paper; the authors gratefully acknowledge this assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaiping Yu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Yu, K. Development of composite sub-step explicit dissipative algorithms with truly self-starting property. Nonlinear Dyn 103, 1911–1936 (2021). https://doi.org/10.1007/s11071-021-06202-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06202-y

Keywords

Navigation