Skip to main content
Log in

Dynamical distributed control and synchronization

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

It is well known that most of real-world phenomena are described by partial differential equations. Nevertheless, for control design purposes it is very common to approximate them with a set of ordinary differential equations, since conventional design methods, such as calculus of variations or differential geometry, turn out to be very complex for this class of systems. However, by doing this, valuable properties are lost. In this work, we present a dynamical distributed control for nonlinear partial differential equation systems and we focus on solving the Generalized Synchronization problem, since this topic has multiple applications in the disciplines of engineering, biology, physics, etc. For the design of the control, we utilize a differential algebraic approach. The key ingredient of our design method is to find a canonical form of the given systems by means of the so-called partial differential primitive element. This representation is known as Generalized Observability Canonical Form and allows us to design a dynamical distributed control in a natural way. Additionally, to avoid a functional analysis for the stability of the resultant synchronization error, we propose to utilize tools from semi-group and spectral theory of infinite dimensional systems in a Hilbert space. As a result, we present a design approach less complex and, therefore, more accessible than most common design methods. Besides, with the proposed stability analysis, we obtain an easy criterion to select the control gains; hence, we can solve the generalized synchronization problem of partial differential equation systems in a simple way. To validate the effectiveness of the proposed control, we present two examples of generalized synchronization for reaction-diffusion systems and show their respective numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\(\Vert * \Vert \) :

Euclidean norm

\(*_{z}\) :

First-order derivative with respect to spatial coordinate z

\(\dot{*}\) :

First-order derivative with respect to time

\({\mathscr {A}}\) :

Linear operator

\(\partial ^{(n)}\) :

Aleatory differential operator of order n

\(\partial _i^{K}\) :

ith aleatory differential operator in K

\(\varPhi _\mathrm{m}\) :

Master system’s coordinate transformation

\(\varPhi _\mathrm{s}\) :

Slave system’s coordinate transformation

\(F_\mathrm{m}\) :

Master system’s state function

\(F_\mathrm{s}\) :

Slave system’s nonlinear state function

\(h_\mathrm{m}\) :

Master system’s output function

\(h_\mathrm{s}\) :

Slave system’s output function

\(H_\mathrm{{ms}}\) :

Coordinate transformation from slave to master state space

\({*}^{(n)}\) :

Derivative with respect to time of order n

\({\mathbb {R}}\) :

Real numbers

\({\mathbb {R}}^{n_\mathrm{m}}\) :

Master system’s n-dimensional state space

\({\mathbb {R}}^{n_\mathrm{s}}\) :

Slave system’s n-dimensional state space

\({\mathbb {Z}}\) :

Integer numbers

\(\sigma (*)\) :

Spectrum

\(\varSigma _\mathrm{m}\) :

Master system

\(\varSigma _\mathrm{s}\) :

Slave system

B :

Compact set

E :

Hilbert space

KL :

Partial differential fields

\(K \langle u \rangle \) :

Partial differential field generated by K, u and the time partial derivatives of u

L/K :

Partial differential field extension

M :

Algebraic Manifold

\(r(*)\) :

Spectral radius

S(t):

Semi-group

\(\alpha _0\) :

Growth bound

\({\bar{y}}\) :

Partial differential primitive element

\(\delta \) :

Master system’s state vector in transformed coordinates

\(\eta \) :

Slave system’s state vector in transformed coordinates

\(\kappa _i\) :

Control gains

\(\mu \) :

Master system’s state vector

\(\nu \) :

Slave system’s state vector

\(\xi \) :

Aleatory system’s state vector in transformed coordinates

A :

Feed rate

B :

Reaction speed

\(D_X,D_Y\) :

Diffusion constants

e :

Synchronization error

\(u_\mathrm{m}\) :

Master system’s input

\(u_\mathrm{s}\) :

Slave system’s input

XY :

Substances concentrations

\(y_\mathrm{m}\) :

Master system’s output

\(y_\mathrm{s}\) :

Slave system’s output

References

  1. Alinezhad, H.S., Yamchi, M.H., Esfanjani, R.M.: Robust synchronization of networked manipulators using distributed dynamic \(H_\infty \) controllers. ISA Trans. 83, 239–247 (2018)

    Article  Google Scholar 

  2. Beck, M.: A Brief Introduction to Stability Theory for Linear PDEs. SIAM, Philadelphia (2012)

    Google Scholar 

  3. Chen, B.S., Chang, Y.T.: Fuzzy state-space modeling and robust observer-based control design for nonlinear partial differential systems. IEEE Trans. Fuzzy Syst. 17(5), 1025–1043 (2009)

    Article  Google Scholar 

  4. Chen, F., Zhang, W.: LMI criteria for robust chaos synchronization of a class of chaotic systems. Nonlinear Anal. Theory Methods Appl. 67(12), 3384–3393 (2007)

    Article  MathSciNet  Google Scholar 

  5. Coron, J.M., d’Andrea Novel, B., Bastin, G.: A strict lyapunov function for boundary control of hyperbolic systems of conservation laws. IEEE Trans. Autom. control 52(1), 2–11 (2007)

    Article  MathSciNet  Google Scholar 

  6. De Wit, A., Lima, D., Dewel, G., Borckmans, P.: Spatiotemporal dynamics near a codimension-two point. Phys. Rev. E 54(1), 261 (1996)

    Article  Google Scholar 

  7. Demetriou, M.A.: Synchronization and consensus controllers for a class of parabolic distributed parameter systems. Syst. Control Lett. 62(1), 70–76 (2013)

    Article  MathSciNet  Google Scholar 

  8. Demetriou, M.A., Fahroo, F.: Synchronization of a class of second order distributed parameter systems. IFAC Proc. Vol. 46(26), 73–78 (2013)

    Article  Google Scholar 

  9. Doelman, A., Kaper, T.J., Zegeling, P.A.: Pattern formation in the one-dimensional Gray-Scott model. Nonlinearity 10(2), 523 (1997)

    Article  MathSciNet  Google Scholar 

  10. Feki, M.: An adaptive chaos synchronization scheme applied to secure communication. Chaos Solitons Fractals 18(1), 141–148 (2003)

    Article  MathSciNet  Google Scholar 

  11. Fischer, I., Liu, Y., Davis, P.: Synchronization of chaotic semiconductor laser dynamics on subnanosecond time scales and its potential for chaos communication. Phys. Rev. A 62(1), 011801 (2000)

    Article  Google Scholar 

  12. Flores-Flores, J.P., Martínez-Guerra, R.: A dynamic controller for pde-based systems. In: 2019 7th International Conference on Control, Mechatronics and Automation (ICCMA), pp. 68–72. IEEE (2019)

  13. Gray, P., Scott, S.: Autocatalytic reactions in the isothermal, continuous stirred tank reactor: isolas and other forms of multistability. Chem. Eng. Sci. 38(1), 29–43 (1983)

    Article  Google Scholar 

  14. Khadra, A., Liu, X., Shen, X.: Impulsive control and synchronization of spatiotemporal chaos. Chaos Solitons Fractals 26(2), 615–636 (2005)

    Article  MathSciNet  Google Scholar 

  15. Mattheij, R.M., Rienstra, S.W., ten Thije Boonkkamp, J.H.: Partial Differential Equations: Modeling, Analysis, Computation, vol. 10. SIAM, Philadelphia (2005)

    Book  Google Scholar 

  16. Meng, Q., Shi, P.: Stochastic optimal control for backward stochastic partial differential systems. J. Math. Anal. Appl. 402(2), 758–771 (2013)

    Article  MathSciNet  Google Scholar 

  17. Morris, K., Levine, W.: Control of systems governed by partial differential equations. In: The Control Theory Handbook. CRC Press, Florida (2010)

  18. Oberkampf, W.L., DeLand, S.M., Rutherford, B.M., Diegert, K.V., Alvin, K.F.: Error and uncertainty in modeling and simulation. Reliab. Eng. Syst. Saf. 75(3), 333–357 (2002)

    Article  Google Scholar 

  19. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821 (1990)

    Article  MathSciNet  Google Scholar 

  20. Smyshlyaev, A., Krstic, M.: Closed-form boundary state feedbacks for a class of 1-d partial integro-differential equations. IEEE Trans. Autom. Control 49(12), 2185–2202 (2004)

    Article  MathSciNet  Google Scholar 

  21. Solis, M.A., Olivares, M., Allende, H.: Stabilizing dynamic state feedback controller synthesis: a reinforcement learning approach. Stud. Inf. Control 25(2), 245–254 (2016)

    Google Scholar 

  22. Tai, W., Teng, Q., Zhou, Y., Zhou, J., Wang, Z.: Chaos synchronization of stochastic reaction–diffusion time-delay neural networks via non-fragile output-feedback control. Appl. Math. Comput. 354, 115–127 (2019)

    MathSciNet  MATH  Google Scholar 

  23. Wang, J., Wu, K.N., Pan, P.L.: Finite-time synchronization of coupled stochastic partial differential systems. In: 2015 34th Chinese Control Conference (CCC), pp. 1705–1709. IEEE (2015)

  24. Wang, K., Steyn-Ross, M.L., Steyn-Ross, D.A., Wilson, M.T., Sleigh, J.W., Shiraishi, Y.: Simulations of pattern dynamics for reaction-diffusion systems via simulink. BMC Syst. Biol. 8(1), 45 (2014)

    Article  Google Scholar 

  25. Wu, K., Chen, B.S.: Synchronization of partial differential systems via diffusion coupling. IEEE Trans. Circuits Syst. I Reg. Pap. 59(11), 2655–2668 (2012)

    Article  MathSciNet  Google Scholar 

  26. Wu, K.N., Li, C.X., Chen, B.S., Yao, Y.: Robust \(H_\infty \) synchronization of coupled partial differential systems with spatial coupling delay. IEEE Trans. Circuits Syst. II Express Briefs 60(7), 451–455 (2013)

    Article  Google Scholar 

  27. Wu, K.N., Tian, T., Wang, L.: Synchronization for a class of coupled linear partial differential systems via boundary control. J. Franklin Inst. 353(16), 4062–4073 (2016)

    Article  MathSciNet  Google Scholar 

  28. Wu, K.N., Tian, T., Wang, L., Wang, W.W.: Asymptotical synchronization for a class of coupled time-delay partial differential systems via boundary control. Neurocomputing 197, 113–118 (2016)

    Article  Google Scholar 

  29. Yang, C., Cheng, L., Sun, K., Chen, X., Li, T., Wang, Y., Chen, X., Zhang, A., Qiu, J.: Asymptotical synchronization of a class of driving-response pde networks with time delay and spatially variable coefficients. In: 2015 11th International Conference on Natural Computation (ICNC), pp. 530–534. IEEE (2015)

  30. Yassen, M.: Chaos synchronization between two different chaotic systems using active control. Chaos Solitons Fractals 23(1), 131–140 (2005)

    Article  MathSciNet  Google Scholar 

  31. Yau, H.T., Shieh, C.S.: Chaos synchronization using fuzzy logic controller. Nonlinear Anal. Real World Appl. 9(4), 1800–1810 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Martínez-Guerra.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flores-Flores, J.P., Martínez-Guerra, R. Dynamical distributed control and synchronization. Nonlinear Dyn 103, 1663–1679 (2021). https://doi.org/10.1007/s11071-020-06191-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06191-4

Keywords

Navigation