Skip to main content
Log in

Strong chaotification and robust chaos in the Duffing oscillator induced by two-frequency excitation

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this work, we demonstrate numerically that two-frequency excitation is an effective method to produce chaotification over very large regions of the parameter space for the Duffing oscillator with single- and double-well potentials. It is also shown that chaos is robust in the last case. Robust chaos is characterized by the existence of a single chaotic attractor which is not altered by changes in the system parameters. It is generally required for practical applications of chaos to prevent the effects of fabrication tolerances, external influences, and aging that can destroy chaos. After showing that very large and continuous regions in the parameter space develop a chaotic dynamics under two-frequency excitation for the double-well Duffing oscillator, we demonstrate that chaos is robust over these regions. The proof is based upon the observation of the monotonic changes in the statistical properties of the chaotic attractor when the system parameters are varied and by its uniqueness, demonstrated by changing the initial conditions. The effects of a second frequency in the single-well Duffing oscillator is also investigated. While a quite significant chaotification is observed, chaos is generally not robust in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Westview Press, Boulder (2015)

    MATH  Google Scholar 

  2. Cuomo, K.M., Oppenheim, A.V.: Circuit implementation of synchronized chaos with applications to communications. Phys. Rev. Lett. 71, 65–68 (1993)

    Article  Google Scholar 

  3. Kocarev, L.: Chaos-based cryptography: a brief overview. IEEE Circuits Syst. Mag. 1, 6–21 (2001)

    Article  Google Scholar 

  4. Verschaffelta, G., Khoder, M., Van der Sande, G.: Random number generator based on an integrated laser with on-chip optical feedback. Chaos 27, 114310 (2017)

    Article  Google Scholar 

  5. Dantas, W.G., Rodrigues, L.R., Ujevic, S., Gusso, A.: Using nanoresonators with robust chaos as hardware random number generators. Chaos 30, 043126 (2020)

    Article  MathSciNet  Google Scholar 

  6. Deane, J.H.B., Hamill, D.C.: Improvement of power supply EMC by chaos. Electron. Lett. 32, 1045 (1996)

    Article  Google Scholar 

  7. Carroll, T.L., Rachford, F.J.: Target recognition using nonlinear dynamics. In: Leung, H. (ed.) Chaotic Signal Processing, pp. 23–48. SIAM, Philadelphia (2013)

    Google Scholar 

  8. Zeraoulia, E., Sprott, J.C.: Robust Chaos and Its Applications. World Scientific Publishing, Singapore (2012)

    MATH  Google Scholar 

  9. Zhang, H., Liu, D., Wang, Z.: Controlling Chaos. Springer, London (2009)

    Book  Google Scholar 

  10. Kovacic, I., Brennan, M.J.: The Duffing Equation Nonlinear Oscillators and Their Behavior. Wiley, London (2011)

    Book  Google Scholar 

  11. Gallas, J.: The structure of infinite periodic and chaotic hub cascades in phase diagrams of simple autonomous flows. Int. J. Bifurc. Chaos 20, 197–211 (2010)

    Article  MathSciNet  Google Scholar 

  12. Banerjee, S., Yorke, J.A., Grebogi, C.: Robust chaos. Phys. Rev. Lett. 80, 3049–3052 (1998)

    Article  Google Scholar 

  13. Kuznetsov, S.P., Seleznev, E.P.: A strange attractor of the Smale–Williams type in the chaotic dynamics of a physical system. J. Exp. Theor. Phys. 102, 355–364 (2006)

    Article  MathSciNet  Google Scholar 

  14. Isaeva, O.B., Kuznetsov, S.P., Sataev, I.R., Savin, D.V., Seleznev, E.P.: Hyperbolic chaos and other phenomena of complex dynamics depending on parameters in a nonautonomous system of two alternately activated oscillators. Int. J. Bifurc. Chaos 25, 1530033 (2015)

    Article  MathSciNet  Google Scholar 

  15. Gusso, A., Dantas, W.G., Ujevic, S.: Prediction of robust chaos in micro and nanoresonators under two-frequency excitation. Chaos 29, 033112 (2019)

    Article  MathSciNet  Google Scholar 

  16. Wang, Y.C., Adams, S.G., Thorp, J.S., MacDonald, N.C., Hartwell, P., Bertsch, F.: Chaos in MEMS, parameter estimation and its potential application. IEEE Trans. Circuits Syst. I(45), 1013–1020 (1998)

    Article  Google Scholar 

  17. DeMartini, B.E., Butterfield, H.E., Moehlis, J., Turner, K.L.: Chaos for a microelectromechanical oscillator governed by the nonlinear Mathieu equation. J. Microelectromech. Syst. 16, 1314–1323 (2007)

    Article  Google Scholar 

  18. Barceló, J., de Paúl, I., Bota, S., Segura, J., Verd J.: Chaotic signal generation in the MHz range with a monolithic CMOS-MEMS microbeam resonator. In: 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS), pp. 1037–1040 (2019). https://doi.org/10.1109/MEMSYS.2019.8870887

  19. Cleland, A.N.: Foundations of Nanomechanics. Springer, Berlin (2003)

  20. Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics. Springer, New York (2011)

  21. Tamaseviciute, E., Tamasevicius, A., Mykolaitis, G., Bumeliene, S., Lindberg, E.: Analogue electrical circuit for simulation of the Duffing–Holmes equation. Nonlinear Anal. Model 13, 241–252 (2008)

    Article  Google Scholar 

  22. Moon, F.C., Holmes, W.T.: Double Poincaré sections of a quasiperiodically forced chaotic attractor. Phys. Lett. A 111, 157–160 (1985)

    Article  MathSciNet  Google Scholar 

  23. Wiggins, S.: Chaos in quasiperiodically forced Duffing oscillator. Phys. Lett. B 124, 138–142 (1987)

    Article  MathSciNet  Google Scholar 

  24. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

    Book  Google Scholar 

  25. Ueda, Y.: Random phenomena resulting from nonlinearity in the system described by Duffing’s equation. Int. J. Non-Linear Mech. 20, 481–491 (1985)

    Article  Google Scholar 

  26. Yang, T., Chua, L.: Secure communication via chaotic parameter modulation. IEEE Trans. Circuit. Syst. -I 43, 817–819 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

R. L. Viana was supported by the National Research Funding Agency, CNPq-Brasil, Grant 301019/2019-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Gusso.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gusso, A., Ujevic, S. & Viana, R.L. Strong chaotification and robust chaos in the Duffing oscillator induced by two-frequency excitation. Nonlinear Dyn 103, 1955–1967 (2021). https://doi.org/10.1007/s11071-020-06183-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06183-4

Keywords

Navigation