Persistence and coexistence of infinite attractors in a fractal Josephson junction resonator with unharmonic current phase relation considering feedback flux effect

Abstract

Josephson junction resonators are the devices which exhibit complex behaviours as a consequence of their inductive properties. Even though the insulating medium between Josephson junctions (JJs) is normally considered homogeneous, the fact that lithography is used to form the layer, it has fractal substrates. Such JJs are identified as fractal Josephson junctions (FJJs). In this paper, a new chaotic oscillator based on memristor and FJJ has been investigated. Superconductor properties can dramatically change its operating points especially voltage and heat that are related to Josephson tunnelling. Some changes in the operating points can cause the Josephson tunnelling junctions to oscillate in different oscillation modes in very high frequencies. This can be achieved by considering the potential across the junction with its flux feedback. In order to model the magnetic flux effect, we use a memristor whose memductance function is considered as an exponential function. By varying the type of the bias current, we could observe the property of infinitely coexisting attractors in the memristor-fractal Josephson junction oscillator, which is considered as a rare phenomenon in physical circuits. The proposed Josephson-Memristor circuit model is developed, and its equilibrium points, bifurcation and Lyapunov exponents are computed. As an engineering application, modelling the trajectories of the moving object has been realized. First, the SURF algorithm, which is not affected by the scale and rotations of the object, is used in the images to identify an object that tracks the states of the proposed Josephson-Memristor circuit. In this way, the coordinates of the orbits on which the object moves were determined on the image. In order to reproduce the orbits of the specified object, the coordinate information of the object has been trained to the artificial neural network model and the orbits of the object have been reproduced.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

References

  1. 1.

    Kitamura, T., Yokoyama, M.: Effect of electronic states of triphenylamine derivatives on their charge transport properties. J. Applied. Phys 30(9B), L1656 (1991)

    Google Scholar 

  2. 2.

    Kruchinin, S.P., Klepikov, V.F., Novikov, V.E., Kruchinin, D.S.: Nonlinear current oscillations in the fractal Josephson junction. Mater. Sci. Pol 23(4), 1009 (2005)

    Google Scholar 

  3. 3.

    Uchida, A., Lida, H., Maki, N., Osawa, M., Yoshimori, S.: Chaotic oscillations in Josephson tetrode. IEEE Trans. Appl. Supercond. 14(4), 2064 (2004)

    Google Scholar 

  4. 4.

    Huberman, B.A., Crutchfield, J.P., Packard, N.H.: Noise phenomena in Josephson junctions. Appl. Phys. Lett. 37, 750 (1980)

    Google Scholar 

  5. 5.

    Rajagopal, K.J.P.S., Roy, B.K., Karthikeyan, A.: Dissipative and conservative chaotic nature of a new quasi-periodically forced oscillator with megastability. Chinese J. Phys. 58, 263–272 (2019)

    Google Scholar 

  6. 6.

    Uchida, A., Davis, P., Itaya, S.: Generation of information theoretic secure keys using a chaotic semiconductor laser. Appl. Phys. Lett. 83(15), 3213–3215 (2003)

    Google Scholar 

  7. 7.

    Sugiura, T., Yamanashi, Y., Yoshikawa, N.: Demonstration of 30 Gbit/s generation of superconductive true random number generator. IEEE Trans. Appl. Supercond. 21(3), 843 (2011)

    Google Scholar 

  8. 8.

    Kennedy, M.P., Rovatti, R., Setti, G., Raton, B.: Chaotic Electronics in Telecommunications. Boca Raton CRC (2000)

  9. 9.

    Kautz, R.L.: Chaotic states of RF-biased Josephson junctions. J. Appl. Phys. 52(10), 6241–6246 (1981)

    Google Scholar 

  10. 10.

    Kornev, V.K., Semenov, V.K.: Chaotic and stochastic phenomena in superconducting quantum interferometers. IEEE Trans. Magn. 19, 633–636 (1983)

    Google Scholar 

  11. 11.

    Kruchinin, S., Novikov, V., Klepikov, V.: Nonlinear current oscillations in a Josephson junction with fractal radioisotop composite. Metrol. Meas. Syst XV(3), 381 (2008)

    Google Scholar 

  12. 12.

    Iansiti, M., Qing, H., Westervelt, R.M., Tinkham, M.: Noise and Chaos in a Fractal Basin Boundary Regime of a Josephson Junction. Phys. Rev. Lett. 55(7), 746 (1985)

    Google Scholar 

  13. 13.

    Mehmet Canturk, I.N.A.: Chaotic Dynamics of a Fractal Josephson Junction. J Supercond Nov Magn (2014)

  14. 14.

    Dong, X.-J., Hu, Y.-F., Wu, Y.-Y., Zhao, J., Wan, Z.-Z.: A fractal model for effective thermal conductivity of isotropic porous silica low-k materials. Chin. Phys. Lett. 27(4), 044401 (2010)

    Google Scholar 

  15. 15.

    Boming, Y., Li, J.: Some fractal characters of porous media. Fractals 09(03), 365–372 (2001)

    Google Scholar 

  16. 16.

    Dana, S.K., Sengupta, D., Edoh, K.: Chaotic dynamics in Josephson junction. IEEE Trans. Cir. Sys. I: Fund. Theo. Appl. 48(8), 950–956 (2001)

    Google Scholar 

  17. 17.

    Njitacke, Z.T., Kengne, J., Kengne, L.K.: Antimonotonicity, chaos and multiple coexisting attractors in a simple hybrid diode-based jerk circuit. Chaos, Solitons Fractals 105, 77–91 (2017)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Maguire, L.P., Roche, B., McGinnity, T.M., McDaid, L.: Predicting a chaotic time series using a fuzzy neural network. Inf. Sci. 112(4), 125–136 (1998)

    MATH  Google Scholar 

  19. 19.

    Principe, J.C., Rathie, A., Kuo, J.-M.: Prediction of chaotic time series with neural networks and the issue of dynamic modeling. Int. J. Bifurcation and Chaos 2(04), 989–996 (1992)

    MATH  Google Scholar 

  20. 20.

    Gómez-Gil, P., et al.: A neural network scheme for long-term forecasting of chaotic time series. Neural Process. Lett. 33(3), 215–233 (2011)

    Google Scholar 

  21. 21.

    Guerra, F.A., Coelho, L.D.S.: Multi-step ahead nonlinear identification of Lorenz’s chaotic system using radial basis neural network with learning by clustering and particle swarm optimization. Chaos, Solitons Fractals 35(5), 967–979 (2008)

    MATH  Google Scholar 

  22. 22.

    Guerra, F.A. Coelho, L.: Radial basis neural network learning based on particle swarm optimization to multistep prediction of chaotic Lorenz’s system. In: Fifth International Conference on Hybrid Intelligent Systems (HIS’05). IEEE (2005)

  23. 23.

    Fırat, U.: Kaotik zaman serilerinin yapay sinir ağlarıyla kestirimi: Deprem verisi durumu (2006)

  24. 24.

    Hanbay, D., Türkoğlu, İ., Demir, Y.: Chua Devresinin yapay sinir ağı ile modellenmesi. Fırat Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 19(1), 67–72 (2007)

    Google Scholar 

  25. 25.

    Faqih, A., Kamanditya, B., Kusumoputro, B.: Multi-Step Ahead Prediction of Lorenz’s Chaotic System Using SOM ELM-RBFNN. In: 2018 International Conference on Computer, Information and Telecommunication Systems (CITS). IEEE (2018)

  26. 26.

    Ashraf-Modarres, A., Johari-Majd, V.: On-line Identification and Prediction of Lorenz’s Chaotic System Using Chebyshev Neural Networks (2007)

  27. 27.

    Aqil, M., et al.: Analysis and prediction of flow from local source in a river basin using a Neuro-fuzzy modeling tool. J Environ. Manag. 85(1), 215–223 (2007)

    Google Scholar 

  28. 28.

    Shen, Z., et al.: A novel time series forecasting model with deep learning. Neurocomputing (2019)

  29. 29.

    Dedeoğlu, Y., et al., Videoda Nesne Sınıflandırması için Siluet Tabanlı Yöntem. Signal Processing and Communications Applications (2006) pp. 1–4

  30. 30.

    Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital image processing using MATLAB. Pearson Education India, Chennai (2004)

    Google Scholar 

  31. 31.

    Brunelli, R.: Template matching techniques in computer vision: theory and practice. John Wiley & Sons, New York (2009)

    Google Scholar 

  32. 32.

    Cuimei, L., et al.: Human face detection algorithm via Haar cascade classifier combined with three additional classifiers. in 2017 13th IEEE International Conference on Electronic Measurement & Instruments (ICEMI). (2017). IEEE

  33. 33.

    Soo, S.: Object detection using Haar-cascade Classifier, pp. 1–12. University of Tartu, Institute of Computer Science, Tartu (2014)

    Google Scholar 

  34. 34.

    Dalal, N., Triggs, B., Schmid, C.: Human detection using oriented histograms of flow and appearance. In: European conference on computer vision. Springer (2006)

  35. 35.

    Lei, Z., Fang, T., Li, D.: Histogram of oriented gradient detector with color-invariant gradients in Gaussian color space. Optical Eng. 49(10), 109701 (2010)

    Google Scholar 

  36. 36.

    Heisele, B., et al.: Hierarchical classification and feature reduction for fast face detection with support vector machines. Pattern Recogn. 36(9), 2007–2017 (2003)

    MATH  Google Scholar 

  37. 37.

    Kyrkou, C., Theocharides, T.: A parallel hardware architecture for real-time object detection with support vector machines. IEEE Trans. Comput. 61(6), 831–842 (2011)

    MathSciNet  MATH  Google Scholar 

  38. 38.

    De la Torre, F. and M.J. Black. Robust principal component analysis for computer vision. In: Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001. IEEE (2001)

  39. 39.

    Bartlett, M.S., Movellan, J.R., Sejnowski, T.J.: Face recognition by independent component analysis. IEEE Trans. Neural Netw. 13(6), 1450–1464 (2002)

    Google Scholar 

  40. 40.

    Lifkooee, M.Z., Soysal, Ö.M., Sekeroglu, K.: Video mining for facial action unit classification using statistical spatial–temporal feature image and LoG deep convolutional neural network. Mach. Vis. Appl. 30(1), 41–57 (2019)

    Google Scholar 

  41. 41.

    Manickam, A., et al.: Score level based latent fingerprint enhancement and matching using SIFT feature. Multimed. Tools Appl. 78(3), 3065–3085 (2019)

    Google Scholar 

  42. 42.

    Daş, R., Polat, B., Tuna, G.: Derin Öğrenme ile Resim ve Videolarda Nesnelerin Tanınması ve Takibi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 31(2): 571-581

  43. 43.

    Kitamura, T., Yokoyama, M.: Hole drift mobility and chemical structure of charge-transporting hydrazone compounds. J. Appl. Phys. 69, 821–826 (1991)

    Google Scholar 

  44. 44.

    Kingni, S.T., Kuiate, G.F., Tamba, V.K., Monwanou, A.V., Orou, J.B.C.: Analysis of a Fractal Josephson Junction with Unharmonic Current-Phase Relation. J. Supercond. Novel Magn. 32, 2295–2301 (2019)

    Google Scholar 

  45. 45.

    Canturk, M., Askerzade, I.: Chaotic dynamics of externally shunted Josephson junction with unharmonic CPR. J. Supercond. Novel Magn. 26, 839–843 (2013)

    Google Scholar 

  46. 46.

    Barash, Y.S.: Interfacial pair breaking and planar weak links with an unharrnonic current-phase relation. JETP Lett. 100, 205–215 (2014)

    Google Scholar 

  47. 47.

    Finger, L.: On the dynamica of coupled Josephson junction circuits. Int. J. Bifurcat. Chaos 6(7), 1363–1374 (1996)

    MATH  Google Scholar 

  48. 48.

    Wei, L., Fa-Qiang, W., Xi-Kui, M.: Exponential flux-controlled memristor model and its floating emulator. Chinese Phys. B 24, 118401 (2015)

    Google Scholar 

  49. 49.

    Sprott, J.C., Jafari, S., Khalaf, A.J.M., Kapitaniak, T.: Megastability: coexistence of a countable infinity of nested attractors in a periodically-forced oscillator with spatially periodic damping. Eur. Phys. J. Special Topics 226(9), 1979–1985 (2017)

    Google Scholar 

  50. 50.

    Zhang, G., Ma, J., Alsaedi, A., Ahmad, B., Alzahrani, F.: Dynamical behaviour and application in Josephson Junction coupled by memristor. Appl. Math. Comput. 321, 290–299 (2018)

    MathSciNet  MATH  Google Scholar 

  51. 51.

    Ashraf-Modarres, A., Johari-Majd, V.: On-line Identification and Prediction of Lorenz’s Chaotic System Using Chebyshev Neural Networks. First Joint Congress on Fuzzy and Intelligent Systems, pp. 29–31. Ferdowsi University of Mashhad, Iran (2007)

    Google Scholar 

  52. 52.

    Jahanshahi, H., Rajagopal, K., Akgul, A., Sari, N.N., Namazi, H., Jafari, S.: Complete analysis and engineering applications of a megastable nonlinear oscillator. Int. J. Non-Linear Mech. 107, 126–136 (2018)

    Google Scholar 

  53. 53.

    Prakash, P., Rajagopal, K., Singh, J.P., Roy, B.K.: Megastability in a quasi-periodically forced system exhibiting multistability, quasi-periodic behaviour, and its analogue circuit simulation. AEU – Int. J. Elect. Commun. 92, 111–115 (2018)

    Google Scholar 

  54. 54.

    Prakash, P., Rajagopal, K., Singh, J.P., Roy, B.K.: Megastability, Multistability in a Periodically Forced Conservative and Dissipative System with Signum Nonlinearity. Int. J. Bifurcation Chaos 28(9), 1830030 (2018)

    MathSciNet  MATH  Google Scholar 

  55. 55.

    Dawson, S.P., Grebogi, C., Yorke, J.A., Kan, I., Kocak, H.: Antimonotonicity: inevitable reversals of period-doubling cascades. Phys. Lett. A 162, 249–254 (1992)

    MathSciNet  Google Scholar 

  56. 56.

    Li, C., Sprott, J.C.: Coexisting Hidden Attractors in a 4-D Simplified Lorenz System. Int. J. Bifurcation Chaos 24(3), 1450034 (2014)

    MathSciNet  MATH  Google Scholar 

  57. 57.

    Li, C.-L., Li, H.-M., Li, W., Tong, Y.-N., Zhang, J., Wei, D.Q., Li, F.-D.: Dynamics, implementation and stability of a chaotic system with coexistence of hyperbolic and non-hyperbolic equilibria. Int. J. Electron. Commun. (AEU) 84, 199–205 (2018)

    Google Scholar 

  58. 58.

    Chunbiao, L., Wang, X., Chen, G.: Diagnosing multistability by offset boosting. Nonlinear Dyn. 90, 1335–1341 (2017)

    MathSciNet  Google Scholar 

  59. 59.

    Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16(3), 285–317 (1985)

    MathSciNet  MATH  Google Scholar 

  60. 60.

    Cimen, M.E., et al.: Modelling of a Chaotic System Motion in Video with Artiıficial Neural Networks. Chaos Theory and Applications. 1(1): 38–50

  61. 61.

    Cimen, M.E., et al.: Modeling of Chaotic Motion Video with Artificial Neural Networks, In: Co-chair. p. 193 (2018)

  62. 62.

    Çimen, M.E., et al.: Kaotik bir hareket videosunun yapay sinir ağları ile modellenmesi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20(3), 23–35 (2018)

    Google Scholar 

  63. 63.

    Preucil, J.S.T.K.J.F.L.: FPGA Based Speeded Up Robust Features

  64. 64.

    Xu Bo, Wang Junwen, L.G.D.Y.: Image Copy-move Forgery Detection Based on SURF, In: International Conference on Multimedia Information Networking and Security (2010)

  65. 65.

    Barolli†, Y.S.T.O.M.I.L.: An Object Tracking System Based on SIFT and SURF Feature Extraction Methods, In: 18th International Conference on Network-Based Information Systems (2015)

  66. 66.

    Köse, Y., Döküm Sektöründe Görüntü Işleme Tenkikleri Kullanilarak Parça Kontrolü, In: Elektrik-Elektronik Mühendisliği Yüksek Lisans Programı (2019)

  67. 67.

    Papaefstathiou, D.B.A.N.I.: Fast and Efficient FPGA-based Feature Detection employing the SURF algorithm, In: 18th IEEE Annual International Symposium on Field-Programmable Custom Computing Machines (2010)

  68. 68.

    Karakuş, P, Karabörk H.: Surf Algoritmasi Kullanilarak Uzaktan Algilama Görüntülerinin Geometrik Kaydi

  69. 69.

    Bay, H., Tuytelaars, T., Van Gool, L.: Speeded-up robust features. Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Google Scholar 

  70. 70.

    Chen, W., Ding, S., Chai, Z., He, D., Zhang, W., Zhang, G., Peng, Q., Luo, W.: FPGA-Based Parallel Implementation of SURF Algorithm, In: IEEE 22nd International Conference on Parallel and Distributed Systems (2016)

  71. 71.

    Öztemel, E.: Yapay sinir ağlari. PapatyaYayincilik, Istanbul (2003)

    Google Scholar 

  72. 72.

    Norvig;, S.R.P.: Artificial Intellegence A modern Approach (2009)

Download references

Funding

This study received no funds.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Karthikeyan Rajagopal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karthikeyan, A., Cimen, M.E., Akgul, A. et al. Persistence and coexistence of infinite attractors in a fractal Josephson junction resonator with unharmonic current phase relation considering feedback flux effect. Nonlinear Dyn 103, 1979–1998 (2021). https://doi.org/10.1007/s11071-020-06159-4

Download citation

Keywords

  • Josephson junction
  • Chaos
  • Image processing
  • Artificial neural network