Skip to main content

Advertisement

Log in

Performance limit for base-excited energy harvesting, and comparison with experiments

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We consider the theoretical maximum extractable average power from an energy harvesting device attached to a vibrating table which provides a unidirectional displacement \(A\sin (\omega t)\). The total mass of moving components in the device is m. The device is assembled in a container of dimension L. The masses in the device may be interconnected in arbitrary ways. The maximum extractable average power is bounded by \(\frac{mLA\omega ^3}{\pi }\), for motions in 1, 2, or 3 dimensions; with both rectilinear and rotary motions as special cases; and with either single or multiple degrees of freedom. The limiting displacement profile of the moving masses for extracting maximum power is discontinuous, and not physically realizable. But smooth approximations can be nearly as good: With 15 terms in a Fourier approximation, the upper limit is 99% of the theoretical maximum. For both single-degree-of-freedom linear resonant devices and nonresonant devices where the energy extraction mimics a linear torsional damper, the maximum average power output is \(\frac{mLA\omega ^3}{4}\). Thirty-six experimental energy harvesting devices in the literature are found to extract power amounts ranging from 0.0036 to 29% of the theoretical maximum. Of these thirty-six, twenty achieve less than 2% and three achieve more than 20%. We suggest, as a figure of merit, that energy extraction above \(\frac{0.2 mLA\omega ^3}{\pi }\) may be considered excellent, and extraction above \(\frac{0.3 mLA\omega ^3}{\pi }\) may be considered challenging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. An example may help. Suppose we have a long vertical vibrating pipe in the ocean, and on this pipe we attach an energy harvesting device for some sensing application. The harvesting device changes the local hydrodynamics and may slightly change the local fluid forces experienced by the pipe, but those forces are external and not included in our study of the efficiency of the energy harvester.

  2. Other arguments are possible. We could note that \(|y_1|\) is bounded by L/2 (with nondimensionalization, \(L=1\)), and offers an infinite sequence of turning points; and we could choose a sequence of T values to coincide with those turning points.

  3. Technically, it is a supremum and not a maximum; the term “maximum” is used informally. In practical terms, even 30% of this value will be seen to be excellent.

References

  1. Kim, H.S., Kim, J.H., Kim, J.: A review of piezoelectric energy harvesting based on vibration. Int. J. Precis. Eng. Manuf. 12(6), 1129–1141 (2011)

    Article  Google Scholar 

  2. Harne, R.L., Wang, K.: A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 22(2), 023001 (2013)

    Article  Google Scholar 

  3. Pellegrini, S.P., Tolou, N., Schenk, M., Herder, J.L.: Bistable vibration energy harvesters: a review. J. Intell. Mater. Syst. Struct. 24(11), 1303–1312 (2013)

    Article  Google Scholar 

  4. Daqaq, M.F., Masana, R., Erturk, A., Dane Quinn, D.: On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. Appl. Mech. Rev. 66(4), 040801 (2014)

    Article  Google Scholar 

  5. Tran, N., Ghayesh, M.H., Arjomandi, M.: Ambient vibration energy harvesters: a review on nonlinear techniques for performance enhancement. Int. J. Eng. Sci. 127, 162–185 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Yurchenko, D., Alevras, P.: Parametric pendulum based wave energy converter. Mech. Syst. Signal Process. 99, 504–515 (2018)

    Article  Google Scholar 

  7. Sequeira, D., Little, J., Mann, B.P.: Investigating threshold escape behavior for the gimballed horizontal pendulum system. J. Sound Vib. 450, 47–60 (2019)

    Article  Google Scholar 

  8. Lei, M.C., Xie, L., Du, R.: Kinematic analysis of an auto-winding system with the pawl-lever mechanism and its application in energy harvesting. Int. J. Mech. Sci. 52(12), 1605–1612 (2010)

    Article  Google Scholar 

  9. Lee, B.C., Chung, G.S.: Design and analysis of a pendulum-based electromagnetic energy harvester using anti-phase motion. IET Renew. Power Gener. 10(10), 1625–1630 (2016)

    Article  Google Scholar 

  10. Dotti, F.E., Reguera, F., Machado, S.P.: Damping in a parametric pendulum with a view on energy harvesting. Mech. Res. Commun. 81, 11–16 (2017)

    Article  Google Scholar 

  11. Marszal, M., Witkowski, B., Jankowski, K., Perlikowski, P., Kapitaniak, T.: Energy harvesting from pendulum oscillations. Int. J. Nonlinear Mech. 94, 251–256 (2017)

    Article  Google Scholar 

  12. Simeone, L., Tehrani, M.G., Elliott, S.: Level-dependent load in a pendulum like energy harvester. Mech. Syst. Signal Process. 119, 244–254 (2019)

    Article  Google Scholar 

  13. Kecik, K., Mitura, A.: Energy recovery from a pendulum tuned mass damper with two independent harvesting sources. Int. J. Mech. Sci. 174, 105568 (2020)

    Article  Google Scholar 

  14. Reguera, F., Dotti, F.E., Machado, S.P.: Rotation control of a parametrically excited pendulum by adjusting its length. Mech. Res. Commun. 72, 74–80 (2016)

    Article  Google Scholar 

  15. Das, S., Wahi, P.: Initiation and directional control of period-1 rotation for a parametric pendulum. Proc. R. Soc. A Math. Phys. Eng. Sci. 472(2196), 20160719 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Firoozy, P., Friswell, M.I., Gao, Q.: Using time delay in the nonlinear oscillations of magnetic levitation for simultaneous energy harvesting and vibration suppression. Int. J. Mech. Sci. 163, 105098 (2019)

    Article  Google Scholar 

  17. Nandakumar, K., Wiercigroch, M., Chatterjee, A.: Optimum energy extraction from rotational motion in a parametrically excited pendulum. Mech. Res. Commun. 43, 7–14 (2012)

    Article  Google Scholar 

  18. Tiwari, S., Vyasarayani, C. P., Chatterjee, A.: Performance limit for base-excited energy harvesting, and comparison with experiments (2020). arxiv: 2005.07447

  19. Williams, C., Yates, R.: Analysis of a micro-electric generator for microsystems. Sens. Actuators A Phys. 52(1–3), 8–11 (1996)

    Article  Google Scholar 

  20. Ramlan, R., Brennan, M., Mace, B., Kovacic, I.: Potential benefits of a non-linear stiffness in an energy harvesting device. Nonlinear Dyn. 59(4), 545–558 (2010)

    Article  MATH  Google Scholar 

  21. Blad, T.W., Tolou, N.: On the efficiency of energy harvesters: a classification of dynamics in miniaturized generators under low-frequency excitation. J. Intelli. Mater. Syst. Struct. 30(16), 2436–2446 (2019)

    Article  Google Scholar 

  22. Hosseinloo, A.H., Turitsyn, K.: Fundamental limits to nonlinear energy harvesting. Phys. Rev. Appl. 4(6), 064009 (2015)

    Article  Google Scholar 

  23. Hosseinloo, A.H., Turitsyn, K.: Non-resonant energy harvesting via an adaptive bistable potential. Smart Mater. Struct. 25(1), 015010 (2015)

    Article  Google Scholar 

  24. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods. John Wiley & Sons, New York (2008)

    MATH  Google Scholar 

  25. Smilek, J., Hadas, Z., Vetiska, J., Beeby, S.: Rolling mass energy harvester for very low frequency of input vibrations. Mech. Syst. Signal Process. 125, 215–228 (2019)

    Article  Google Scholar 

  26. Sasaki, K., Osaki, Y., Okazaki, J., Hosaka, H., Itao, K.: Vibration-based automatic power-generation system. Microsyst. Technol. 11(8–10), 965–969 (2005)

    Article  Google Scholar 

  27. Renaud, M., Fiorini, P., van Schaijk, R., Van Hoof, C.: Harvesting energy from the motion of human limbs: the design and analysis of an impact-based piezoelectric generator. Smart Mater. Struct. 18(3), 035001 (2009)

    Article  Google Scholar 

  28. Moss, S.D., McLeod, J.E., Galea, S.C.: Wideband vibro-impacting vibration energy harvesting using magnetoelectric transduction. J. Intell. Mater. Syst. Struct. 24(11), 1313–1323 (2013)

    Article  Google Scholar 

  29. Ju, S., Chae, S.H., Choi, Y., Lee, S., Lee, H.W., Ji, C.-H.: A low frequency vibration energy harvester using magnetoelectric laminate composite. Smart Mater. Struct. 22(11), 115037 (2013)

    Article  Google Scholar 

  30. Miki, D., Honzumi, M., Suzuki, Y., Kasagi, N., Large-amplitude mems electret generator with nonlinear spring. In: IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), pp. 176–179 (2010)

  31. Halim, M.A., Park, J.Y.: Modeling and experiment of a handy motion driven, frequency up-converting electromagnetic energy harvester using transverse impact by spherical ball. Sens. Actuators A Phys. 229, 50–58 (2015)

    Article  Google Scholar 

  32. Ashraf, K., Khir, M.M., Dennis, J., Baharudin, Z.: A wideband, frequency up-converting bounded vibration energy harvester for a low-frequency environment. Smart Mater. Struct. 22(2), 025018 (2013)

    Article  Google Scholar 

  33. Galchev, T., Kim, H., Najafi, K.: Micro power generator for harvesting low-frequency and nonperiodic vibrations. J. Microelectromech. Syst. 20(4), 852–866 (2011)

    Google Scholar 

  34. Liu, H., Lee, C., Kobayashi, T., Tay, C.J., Quan, C.: A new s-shaped mems pzt cantilever for energy harvesting from low frequency vibrations below 30 Hz. Microsyst. Technol. 18(4), 497–506 (2012)

    Article  Google Scholar 

  35. Galchev, T., Aktakka, E.E., Najafi, K.: A piezoelectric parametric frequency increased generator for harvesting low-frequency vibrations. J. Microelectromech. Syst. 21(6), 1311–1320 (2012)

    Article  Google Scholar 

  36. Huang, W.-S., Tzeng, K.-E., Cheng, M.-C., Huang, R.-S.: A silicon mems micro power generator for wearable micro devices. J. Chin. Inst. Eng. 30(1), 133–140 (2007)

    Article  Google Scholar 

  37. Tang, Q., Yang, Y., Li, X.: Bi-stable frequency up-conversion piezoelectric energy harvester driven by non-contact magnetic repulsion. Smart Mater. Struct. 20(12), 125011 (2011)

    Article  Google Scholar 

  38. Bendame, M., Abdel-Rahman, E., Soliman, M.: Wideband, low-frequency springless vibration energy harvesters: part I. J. Micromech. Microeng. 26(11), 115021 (2016)

    Article  Google Scholar 

  39. Dai, X.: A vibration energy harvester with broadband and frequency-doubling characteristics based on rotary pendulums. Sens. Actuators A Phys. 241, 161–168 (2016)

    Article  Google Scholar 

  40. Liu, W., Badel, A., Formosa, F., Wu, Y., Bencheikh, N., Agbossou, A.: A wideband integrated piezoelectric bistable generator: experimental performance evaluation and potential for real environmental vibrations. J. Intell. Mater. Syst. Struct. 26(7), 872–877 (2015)

    Article  Google Scholar 

  41. Malaji, P., Ali, S.: Analysis of energy harvesting from multiple pendulums with and without mechanical coupling. Eur. Phys. J. Spec. Top. 224(14–15), 2823–2838 (2015)

    Article  Google Scholar 

  42. Salauddin, M., Halim, M., Park, J.: A magnetic-spring-based, low-frequency-vibration energy harvester comprising a dual halbach array. Smart Mater. Struct. 25(9), 095017 (2016)

    Article  Google Scholar 

  43. Wang, Y., Zhang, Q., Zhao, L., Kim, E.S.: Non-resonant electromagnetic broad-band vibration-energy harvester based on self-assembled ferrofluid liquid bearing. J. Microelectromech. Syst. 26(4), 809–819 (2017)

    Article  Google Scholar 

  44. Moss, S.D., McLeod, J.E., Powlesland, I.G., Galea, S.C.: A bi-axial magnetoelectric vibration energy harvester. Sens. Actuators A Phys. 175, 165–168 (2012)

    Article  Google Scholar 

  45. Malaji, P., Ali, S.: Magneto-mechanically coupled electromagnetic harvesters for broadband energy harvesting. Appl. Phys. Lett. 111(8), 083901 (2017)

    Article  Google Scholar 

  46. Ashraf, K., Khir, M.M., Dennis, J., Baharudin, Z.: Improved energy harvesting from low frequency vibrations by resonance amplification at multiple frequencies. Sens. Actuators A Phys. 195, 123–132 (2013)

    Article  Google Scholar 

  47. Kuang, Y., Zhu, M.: Parametrically excited nonlinear magnetic rolling pendulum for broadband energy harvesting. Appl. Phys. Lett. 114(20), 203903 (2019)

    Article  Google Scholar 

  48. Nammari, A., Caskey, L., Negrete, J., Bardaweel, H.: Fabrication and characterization of non-resonant magneto-mechanical low-frequency vibration energy harvester. Mech. Syst. Signal Process. 102, 298–311 (2018)

    Article  Google Scholar 

  49. Dechant, E., Fedulov, F., Chashin, D.V., Fetisov, L.Y., Fetisov, Y.K., Shamonin, M.: Low-frequency, broadband vibration energy harvester using coupled oscillators and frequency up-conversion by mechanical stoppers. Smart Mater. Struct. 26(6), 065021 (2017)

    Article  Google Scholar 

  50. Halim, M.A., Park, J.Y.: Theoretical modeling and analysis of mechanical impact driven and frequency up-converted piezoelectric energy harvester for low-frequency and wide-bandwidth operation. Sens. Actuators A Phys. 208, 56–65 (2014)

    Article  Google Scholar 

  51. Gu, L., Livermore, C.: Impact-driven, frequency up-converting coupled vibration energy harvesting device for low frequency operation. Smart Mater. Struct. 20(4), 045004 (2011)

    Article  Google Scholar 

  52. Munaz, A., Lee, B.-C., Chung, G.-S.: A study of an electromagnetic energy harvester using multi-pole magnet. Sens. Actuators A Phys. 201, 134–140 (2013)

    Article  Google Scholar 

  53. Geisler, M., Boisseau, S., Perez, M., Gasnier, P., Willemin, J., Ait-Ali, I., Perraud, S.: Human-motion energy harvester for autonomous body area sensors. Smart Mater. Struct. 26(3), 035028 (2017)

    Article  Google Scholar 

  54. Foisal, A.R.M., Hong, C., Chung, G.-S.: Multi-frequency electromagnetic energy harvester using a magnetic spring cantilever. Sens. Actuators A Phys. 182, 106–113 (2012)

    Article  Google Scholar 

  55. Saravia, C.M., Ramírez, J.M., Gatti, C.D.: A hybrid numerical-analytical approach for modeling levitation based vibration energy harvesters. Sens. Actuators A Phys. 257, 20–29 (2017)

    Article  Google Scholar 

  56. Erturk, A., Inman, D.J.: Broadband piezoelectric power generation on high-energy orbits of the bistable duffing oscillator with electromechanical coupling. J. Sound Vib. 330(10), 2339–2353 (2011)

    Article  Google Scholar 

  57. Moss, S., Barry, A., Powlesland, I., Galea, S., Carman, G.P.: A low profile vibro-impacting energy harvester with symmetrical stops. Appl. Phys. Lett. 97(23), 234101 (2010)

    Article  Google Scholar 

  58. Moss, S., Barry, A., Powlesland, I., Galea, S., Carman, G.: A broadband vibro-impacting power harvester with symmetrical piezoelectric bimorph-stops. Smart Mater. Struct. 20(4), 045013 (2011)

    Article  Google Scholar 

  59. Haroun, A., Yamada, I.: Study of electromagnetic vibration energy harvesting with free/impact motion for low frequency operation. J. Sound Vib. 349, 389–402 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

AC thanks Marcelo Savi, Atanu Mohanty and Sumit Basu for discussions. CPV thanks Thomas Uchida and Ajinkya Desai for helpful comments on earlier drafts.

Funding

We have not received any financial support for conducting this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. P. Vyasarayani or Anindya Chatterjee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, S., Vyasarayani, C.P. & Chatterjee, A. Performance limit for base-excited energy harvesting, and comparison with experiments. Nonlinear Dyn 103, 197–214 (2021). https://doi.org/10.1007/s11071-020-06145-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06145-w

Keywords

Navigation