Skip to main content
Log in

Sensitivity and stability analysis of a Kaplan turbine system considering synergistic regulation

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Kaplan turbines, also known as movable propeller turbines, are attractive for power generation from water currents. They are controlled by guide vanes and runner blades, whose synergistic relationship plays an essential role in maintaining the stable operation of Kaplan turbine systems during transient process. Here we introduce a novel nonlinear dynamic model of a Kaplan turbine system with synergistic regulation by coupling the turbine, generator and governor. Sensitivity and stability analysis of the Kaplan turbine system are carried out based on EFAST method and stability theory. Effects of synergistic regulation on transient characteristic and stability of the Kaplan turbine system are investigated during transient process. Dynamics characteristic and stability region of the Kaplan turbine system suggest that transient performance improvement can be obtained by adjusting the synergistic relationship between the guide vanes and turning angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(m_{t}\) :

Turbine torque (p.u.)

\(q\) :

Flow (p.u.)

\(h\) :

Water head (p.u.)

\(n\) :

Rotating speed (p.u.)

\(y\) :

Guide vane opening (p.u.)

\(z\) :

Runner blade turning angle (p.u.)

\(\alpha\) :

Hydraulic friction parameter (p.u.)

\(T_{w}\) :

Inertia time constant (s)

\(e_{x} ,e_{h} ,e_{y} ,e_{z}\) :

Partial derivatives of the turbine torque with respect to rotating speed, water head, guide vane opening and runner blade turning angle (p.u.)

\(e_{qx}\), \(e_{qh}\), \(e_{qy}\), \(e_{qz}\) :

Partial derivatives of the flow with respect to rotating speed, water head, guide vane opening and runner blade turning angle (p.u.)

\(P_{m}\) :

Mechanical input power (p.u.)

\(\delta\) :

Generator power-angle (p.u.)

\(w\) :

Rotor angle velocity (p.u.)

\(P_{e}\) :

Generator electromagnetic power (p.u.)

\(D\) :

Generator damping factor (p.u.)

\(K_{k}\) :

Synergistic regulation parameter (p.u.)

\(K_{p}\) :

Proportional adjustment parameter (p.u.)

\(K_{i}\) :

Integral adjustment parameter (s1)

\(K_{d}\) :

Differential adjustment parameter (s)

References

  1. Quaranta, E.: Optimal rotational speed of Kaplan and Francis Turbines with focus on low-head hydropower applications and dataset collection. J. Hydraul. Eng.-ASCE 145(12), 04019043 (2019)

    Article  Google Scholar 

  2. Yassi, Y.: The effects of improvement of the main shaft on the operating conditions of the Agnew turbine. Energy Conv. Manag. 50(10), 2486–2494 (2009)

    Article  Google Scholar 

  3. Zhang, Y.N., Liu, K.H., Xian, H.Z., Du, X.Z.: A review of methods for vortex identification in hydroturbines. Renew. Sust. Energ. Rev. 81, 1269–1285 (2018)

    Article  Google Scholar 

  4. Zhang, H., Chen, D.Y., Xu, B.B., Wu, C.Z., Wang, X.Y.: The slow-fast dynamical behaviors of a hydro-turbine governing system under periodic excitations. Nonlinear Dyn. 87(4), 2519–2528 (2017)

    Article  Google Scholar 

  5. Bozic, I., Benisek, M.: An improved formula for determination of secondary energy losses in the runner of Kaplan turbine. Renew. Energy 94, 537–546 (2016)

    Article  Google Scholar 

  6. Wu, Q.Q., Zhang, L.K., Ma, Z.Y.: A model establishment and numerical simulation of dynamic coupled hydraulic-mechanical-electric-structural system for hydropower station. Nonlinear Dyn. 87(1), 459–474 (2017)

    Article  Google Scholar 

  7. Chae, K.J., Kim, I.S., Ren, X.H., Cheon, K.H.: Reliable energy recovery in an existing municipal wastewater treatment plant with a flow-variable micro-hydropower system. Energy Conv. Manag. 101, 681–688 (2015)

    Article  Google Scholar 

  8. Yassi, Y., Hashemloo, S.: Improvement of the efficiency of the Agnew micro hydro turbine at part loads due to installing guide vanes mechanism. Energy Conv. Manag. 51(10), 1970–1975 (2010)

    Article  Google Scholar 

  9. Baidar, B., Nicolle, J., Gandhi, B.K., Cervantes, M.J.: Sensitivity of the Winter-Kennedy method to different guide vane openings on an axial machine. Flow Meas. Instrum. 68, 101585 (2019)

    Article  Google Scholar 

  10. Menarin, H.A., Costa, H.A., Fredo, G.L.M., Gosmann, R.P., Finardi, E.C., Weiss, L.A.: Dynamic modeling of Kaplan turbines including flow rate and efficiency static characteristics. IEEE Trans. Power Syst. 34(4), 3026–3034 (2019)

    Article  Google Scholar 

  11. Kim, H.H., Rakibuzzaman, M., Kim, M., Suh, S.H.: Flow and fast fourier transform analyses for tip clearance effect in an operating Kaplan turbine. Energies 12(2), 264 (2019)

    Article  Google Scholar 

  12. Hatata, A.Y., El-Saadawi, M.M., Saad, S.: A feasibility study of small hydro power for selected locations in Egypt. Energy Strateg. Rev. 24, 300–313 (2019)

    Article  Google Scholar 

  13. Zhang, H., Chen, D.Y., Wu, C.Z., Wang, X.Y.: Dynamics analysis of the fast-slow hydro-turbine governing system with different time-scale coupling. Commun. Nonlinear Sci. Numer. Simul. 54, 136–147 (2018)

    Article  MathSciNet  Google Scholar 

  14. Martinez, J.J., Deng, Z.D., Titzler, P.S., Duncan, J.P., Lu, J., Mueller, R.P., Tian, C., Trumbo, B.A., Ahmann, M.L., Renholds, J.F.: Hydraulic and biological characterization of a large Kaplan turbine. Renew. Energy 131, 240–249 (2019)

    Article  Google Scholar 

  15. Chen, H.X., Zhou, D.Q., Zheng, Y., Jiang, S.W., Yu, A., Guo, Y.: Load rejection transient process simulation of a Kaplan turbine model by co-adjusting guide vanes and runner blades. Energies 11(12), 3354 (2018)

    Article  Google Scholar 

  16. Dehkharqani, A.S., Cervantes, M.J., Aidanpaa, J.O.: Numerical analysis of fluid-added parameters for the torsional vibration of a Kaplan turbine model runner. Adv. Mech. Eng. 9(10), 1687814017732893 (2017)

    Google Scholar 

  17. Javadi, A., Nilsson, H.: Detailed numerical investigation of a Kaplan turbine with rotor–stator interaction using turbulence-resolving simulations. Int. J. Heat Fluid Flow 63, 1–13 (2017)

    Article  Google Scholar 

  18. Nand, K., Singh, S.P.: Dynamic simulations of hydro turbine and its state estimation based LQ control. Energy Conv. Manag. 47(3), 112–118 (2006)

    Google Scholar 

  19. Li, S., Li, X.C., Chen, D.Y.: Wide-area-signals-based nonlinear excitation control in multi-machine power systems. IEE J Trans. Electr. Electron. Eng. 14(3), 366–375 (2019)

    Article  Google Scholar 

  20. Guo, W.C., Yang, J.D., Chen, J.P., Wang, M.J.: Nonlinear modeling and dynamic control of hydro-turbine governing system with upstream surge tank and sloping ceiling tailrace tunnel. Nonlinear Dyn. 84(3), 1383–1397 (2016)

    Article  MathSciNet  Google Scholar 

  21. Qian, J., Zeng, Y., Guo, Y.K., Zhang, L.X.: Reconstruction of the complete characteristics of the hydro turbine based on inner energy loss. Nonlinear Dyn. 86(2), 963–974 (2016)

    Article  Google Scholar 

  22. Zhang, H., Chen, D.Y., Xu, B.B., Patelli, E., Tolo, S.: Dynamic analysis of a pumped-storage hydropower plant with random power load. Mech. Syst. Signal Proc. 100, 524–533 (2018)

    Article  Google Scholar 

  23. Guo, W.C., Yang, J.D.: Stability performance for primary frequency regulation of hydro-turbine governing system with surge tank. Appl. Math. Model. 54, 446–466 (2018)

    Article  MathSciNet  Google Scholar 

  24. Yang, W.J., Norrlund, P., Saarinen, L., Witt, A., Smith, B., Yang, J.D., Lundin, U.: Burden on hydropower units for short-term balancing of renewable power systems. Nat. Commun. 9, 2633 (2018)

    Article  Google Scholar 

  25. Li, D.Y., Wang, H.J., Qin, Y.L., Li, Z.G., Wei, X.Z., Qin, D.Q.: Mechanism of high amplitude low frequency fluctuations in a pump-turbine in pump mode. Renew. Energy 126, 668–680 (2018)

    Article  Google Scholar 

  26. Xu, B.B., Chen, D.Y., Zhang, H., Wang, F.F.: Modeling and stability analysis of a fractional-order Francis hydro-turbine governing system. Chaos Solitons Fractals 75, 50–61 (2015)

    Article  MathSciNet  Google Scholar 

  27. Mallik, W., Santra, S.: Mitigation of vortex-induced vibration lock-in using time-delay closed-loop control. Nonlinear Dyn. 100(2), 1441–1456 (2020)

    Article  Google Scholar 

  28. Sakthivel, R., Santra, S., Mathiyalagan, K., Anthoni, S.M.: Robust reliable sampled-data control for offshore steel jacket platforms with nonlinear perturbations. Nonlinear Dyn. 78(2), 1109–1123 (2014)

    Article  MathSciNet  Google Scholar 

  29. Williams, D.R., Greenblatt, D., Muller-Vahl, H., Santra, S., Reissner, F.: Feed-forward dynamic stall control model. AIAA J. 57(2), 608–615 (2019)

    Article  Google Scholar 

  30. Karthick, S., Kumar, K.S., Mohan, S.: Relative analysis of controller effectiveness for vertical plane control of an autonomous underwater vehicle. In OCEANS 2016-Shanghai, pp. 1–6. IEEE, Shanghai (2016)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant number 51579208).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, P., Li, S. Sensitivity and stability analysis of a Kaplan turbine system considering synergistic regulation. Nonlinear Dyn 103, 383–397 (2021). https://doi.org/10.1007/s11071-020-06134-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06134-z

Keywords

Navigation