Skip to main content
Log in

Control and analysis of epilepsy waveforms in a disinhibition model of cortex network

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Considering the disinhibition circuit between inhibitory neuronal populations with different time scales in cortical neural networks, here we propose a novel model to describe the occurrences and transitions of epilepsy waveforms. With the model we can successfully simulate poly-spike complexes, which are common in electrophysiological experiments and focal epilepsy patients. Meanwhile, we focus on the dynamic transitions between epilepsy waveforms and normal state and are devoted to exploring effective electrical stimulation strategies. Results show that disinhibition can induce an epileptic bidirectional transition, which is from spike and wave discharges, to poly-spike complexes and then to low-voltage rapid discharge activity, or it is reversed. And fascinating dynamical transition behaviors can be induced by varying average inhibitory synaptic gain. Interestingly, after applying two different control signals (deep brain stimulation and oscillatory input) to the system, all epilepsy waveforms can be suppressed or even eliminated. Results shed light on the pathophysiological mechanisms of epilepsy and guide clinical treatment from a theoretical viewpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sauro, K.M., Wiebe, S., Dunkley, C., et al.: The current state of epilepsy guidelines: a systematic review. Epilepsia 57(1), 13–23 (2016)

    Article  Google Scholar 

  2. Paz, J.T., Huguenard, J.R.: Microciruites and their interaction in epilepsy: is the focus out of focus? Nat. Neurosci. 18(3), 351–359 (2015)

    Article  Google Scholar 

  3. Alexander, A., Maroso, M., Soltesz, I.: Organization and control of epileptic circuits in temporal lobe epilepsy. Prog. Brain Res. 226, 127–154 (2016)

    Article  Google Scholar 

  4. Moshé, S.L., Perucca, E., Ryvlin, P., et al.: Epilepsy: new advances. Lancet 385(9971), 884–898 (2015)

    Article  Google Scholar 

  5. Touboul, J., Wendling, F., Chauvel, P., et al.: Neural mass activity, bifurcations, and epilepsy. Neural Comput. 23(12), 3232–3286 (2011)

    Article  MathSciNet  Google Scholar 

  6. Fan, X., Gaspard, N., Legros, B., et al.: Dynamics underlying interictal to ICTAL transition in temporal lobe epilepsy: insights from a neural mass model. Eur. J. Neurosci. 47(3), 258–268 (2018)

    Article  Google Scholar 

  7. Wendling, F., Benquet, P., Bartolomei, F., et al.: Computational models of epileptiform activity. J. Neurosci. Methods 260, 233–251 (2016)

    Article  Google Scholar 

  8. Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12(1), 1–24 (1972)

    Article  Google Scholar 

  9. Wilson, H.R., Cowan, J.D.: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13(2), 55–80 (1973)

    Article  MATH  Google Scholar 

  10. Da Silva, F.H.L., Hoeks, A., Smits, H., et al.: Model of brain rhythmic activity. Kybernetik 15(1), 27–37 (1974)

    Article  Google Scholar 

  11. Jansen, B.H., Rit, V.G.: Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol. Cybern. 73(4), 357–366 (1995)

    Article  MATH  Google Scholar 

  12. Wendling, F., Bartolomei, F., Bellanger, J.J., et al.: Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition. Eur. J. Neurosci. 15(9), 1499–1508 (2002)

    Article  Google Scholar 

  13. David, O., Friston, K.J.: A neural mass model for MEG/EEG: coupling and neuronal dynamics. NeuroImage 20(3), 1743–1755 (2003)

    Article  Google Scholar 

  14. Ursino, M., Cona, F., Zavaglia, M.: The generation of rhythms within a cortical region: analysis of a neural mass model. NeuroImage 52(3), 1080–1094 (2010)

    Article  Google Scholar 

  15. Suffczynski, P., Kalitzin, S., Da Silva, F.H.L.: Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network. Neuroscience 126(2), 467–484 (2004)

    Article  Google Scholar 

  16. Grimbert, F., Faugeras, O.: Bifurcation analysis of Jansen’s neural mass model. Neural Comput. 18(12), 3052–3068 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wendling, F., Chauvel, P.: Transition to ICTAL activity in temporal lobe epilepsy: insights from macroscopic models. In: Computational Neuroscience in Epilepsy, pp. 356-XIV. Academic Press, Cambridge (2008)

  18. Blenkinsop, A., Valentin, A., Richardson, M.P., et al.: The dynamic evolution of focal-onset epilepsies-combining theoretical and clinical observations. Eur. J. Neurosci. 36(2), 2188–2200 (2012)

    Article  Google Scholar 

  19. Geng, S., Zhou, W.: Influence of extrinsic inputs and synaptic gains on dynamics of Wendling’s neural mass model: a bifurcation analysis. J. Integr. Neurosci. 15(04), 463–483 (2016)

    Article  Google Scholar 

  20. Geng, S., Zhou, W., Zhao, X., et al.: Bifurcation and oscillation in a time-delay neural mass model. Biol. Cybern. 108(6), 747–756 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Song, J.L., Li, Q., Pan, M., et al.: Seizure tracking of epileptic EEGs using a model-driven approach. J. Neural Eng. 17(1), 016–024 (2020)

    Article  Google Scholar 

  22. Wendling, F., Bellanger, J.J., Bartolomei, F., et al.: Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals. Biol. Cybern. 83(4), 367–378 (2000)

    Article  Google Scholar 

  23. Cao, Y., Ren, K., Su, F., et al.: Suppression of seizures based on the multi-coupled neural mass model. Chaos Interdiscip. J. Nonlinear Sci. 25(10), 103–120 (2015)

    Article  MathSciNet  Google Scholar 

  24. Ahmadizadeh, S., Karoly, P.J., Nešić, D., et al.: Bifurcation analysis of two coupled Jansen-Rit neural mass models. PloS ONE 13(3), e0192842 (2018)

    Article  Google Scholar 

  25. Liang, S., Wang, Z.: Controlling a neuron by stimulating a coupled neuron. Appl. Math. Mech. 40(1), 13–24 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ge, Y., Cao, Y., Yi, G., et al.: Robust closed-loop control of spike-and-wave discharges in a thalamocortical computational model of absence epilepsy. Sci. Rep. 9(1), 1–16 (2019)

    Article  Google Scholar 

  27. Wang, Z., Wang, Q.: Stimulation strategies for absence seizures: targeted therapy of the focus in coupled thalamocortical model. Nonlinear Dyn. 96(2), 1649–1663 (2019)

    Article  Google Scholar 

  28. Li, J., Liu, S., Liu, W., Yu, Y., Wu, Y.: Suppression of firing activities in neuron and neurons of network induced by electromagnetic radiation. Nonlinear Dyn. 83(1–2), 801–810 (2016)

    Article  MathSciNet  Google Scholar 

  29. Lv, M., Ma, J.: Model of electrical activity in a neuron under magnetic flow. Nonlinear Dyn. 85, 1479–1490 (2016)

    Article  Google Scholar 

  30. Fan, D., Wang, Q., Perc, M.: Disinhibition-induced transitions between absence and tonic-clonic epileptic seizures. Sci. Rep. 5, 12618 (2015)

    Article  Google Scholar 

  31. Fan, D., Liu, S., Wang, Q.: Stimulus-induced epileptic spike-wave discharges in thalamocortical model with disinhibition. Sci. Rep. 6(1), 1–21 (2016)

    Article  Google Scholar 

  32. Liu, S., Wang, Q.: Transition dynamics of generalized multiple epileptic seizures associated with thalamic reticular nucleus excitability: a computational study. Commun. Nonlinear Sci. Numer. Simul. 52, 203–213 (2017)

    Article  MATH  Google Scholar 

  33. Liu, S., Wang, Q., Fan, D.: Disinhibition-induced delayed onset of epileptic spike-wave discharges in a five variable model of cortex and thalamus. Front. Comput. Neurosci. 10, 28 (2016)

    Article  Google Scholar 

  34. Pi, H.J., Hangya, B., Kvitsiani, D., et al.: Cortical interneurons that specialize in disinhibitory control. Nature 503(7477), 521–524 (2013)

    Article  Google Scholar 

  35. Chen, M., Guo, D., et al.: Critical roles of the direct GABAergic Pallido-cortical pathway in controlling absence seizures. PLoS Comput. Biol. 11(10), e1004539 (2015)

    Article  MathSciNet  Google Scholar 

  36. Liu, F., Wang, J., Liu, C., et al.: A neural mass model of basal ganglia nuclei simulates pathological beta rhythm in Parkinson’s disease. Chaos 26(12), 123113 (2016)

    Article  MathSciNet  Google Scholar 

  37. Bettus, G., Wendling, F., Guye, M., et al.: Enhanced EEG functional connectivity in mesial temporal lobe epilepsy. Epilepsy Res. 81(1), 58–68 (2008)

    Article  Google Scholar 

  38. Noebels, J.L.: Targeting epilepsy genes. Neuron 16(2), 241–244 (1996)

    Article  Google Scholar 

  39. Muñoz, A., Méndez, P., DeFelipe, J., et al.: Cation-chloride cotransporters and GABA-ergic innervation in the human epileptic hippocampus. Epilepsia 48(4), 663–673 (2007)

    Article  Google Scholar 

  40. Haghighi, H.S., Markazi, A.H.D.: Dynamic origin of spike and wave discharges in the brain. Neuroimage 197, 69–79 (2019)

    Article  Google Scholar 

  41. Marten, F., Rodrigues, S., Benjamin, O., et al.: Onset of polyspike complexes in a mean-field model of human electroencephalography and its application to absence epilepsy. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367(1891), 1145–1161 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Marten, F., Rodrigues, S., Suffczynski, P., et al.: Derivation and analysis of an ordinary differential equation mean-field model for studying clinically recorded epilepsy dynamics. Phys. Rev. E 79(2), 021911 (2009)

    Article  MathSciNet  Google Scholar 

  43. Hebbink, G.J.: Activity Types in a Neural Mass Model. University of Twente, Enschede (2014)

    Google Scholar 

  44. Dodt, H.U., Pawelzik, H., Zieglga, W.: Actions of noradrenaline on neocortical neurons in vitro. Brain Res. 545(1–2), 307–311 (1991)

    Article  Google Scholar 

  45. Van Rotterdam, A., Da Silva, F.H.L., Van den Ende, J., et al.: A model of the spatial-temporal characteristics of the alpha rhythm. Bull. Math. Biol. 44(2), 283–305 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  46. Arrais, M., Wendling, F., Modolo, J.: Identification of effective stimulation parameters to abort epileptic seizures in a neural mass model. In: 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, pp. 5208–5211 (2019)

  47. Abbott, L.F.: Lapicque’s introduction of the integrate-and-fire model neuron. Brain Res. Bull. 50(5–6), 303–304 (1907)

    Google Scholar 

  48. Citri, A., Malenka, R.C.: Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33(1), 18–41 (2008)

    Article  Google Scholar 

  49. Kile, K.B., Tian, N., Durand, D.M.: Low frequency stimulation decreases seizure activity in a mutation model of epilepsy. Epilepsia 51(9), 1745–1753 (2010)

    Article  Google Scholar 

  50. Bikson, M., Lian, J., Hahn, P.J., et al.: Suppression of epileptiform activity by high frequency sinusoidal fields in rat hippocampal slices. J. Physiol. 531(Pt 1), 181 (2001)

    Article  Google Scholar 

  51. Chiang, C.C., Lin, C.C.K., Ju, M.S., et al.: High frequency stimulation can suppress globally seizures induced by 4-AP in the rat hippocampus: an acute in vivo study. Brain Stimul. 6(2), 180–189 (2013)

    Article  Google Scholar 

  52. Boon, P., Vonck, K., De Herdt, V., et al.: Deep brain stimulation in patients with refractory temporal lobe epilepsy. Epilepsia 48(8), 1551–1560 (2007)

    Article  Google Scholar 

  53. Fisher, R.S., Velasco, A.L.: Electrical brain stimulation for epilepsy. Nat. Rev. Neurol. 10(5), 261–270 (2014)

    Article  Google Scholar 

  54. Zhang, H., Wang, Q., Chen, G.: Control effects of stimulus paradigms on characteristic firings of parkinsonism. Chaos 24(3), 033134 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  55. Wichmann, T., Soares, J.: Neuronal firing before and after burst discharges in the monkey basal ganglia is predictably patterned in the normal state and altered in parkinsonism. J. Neurophysiol. 95(4), 2120–2133 (2006)

    Article  Google Scholar 

  56. Rivlin-Etzion, M., Marmor, O., Saban, G., et al.: Low-Pass filter properties of basal ganglia-cortical-muscle loops in the normal and MPTP primate model of Parkinsonism. J. Neurosci. 28(3), 633–649 (2008)

    Article  Google Scholar 

  57. Wang, Z., Wang, Q.: Eliminating absence seizures through the deep brain stimulation to thalamus reticular nucleus. Front. Comput. Neurosci. 11 (2017)

  58. Hu, B., Wang, Q.: Controlling absence seizures by deep brain stimulus applied on substantia nigra pars reticulata and cortex. Chaos Solitons Fractals Appl. Sci. Eng. Interdiscipl. J. Nonlinear Sci. 80, 13–23 (2015)

    MathSciNet  MATH  Google Scholar 

  59. Zhang, H., Deng, Z., Liu, S.: Transition dynamics of generalized periodic discharges observed in EEG waveforms. Int. J. Bifurcat. Chaos 29(13), 1930038 (2019)

    Article  MathSciNet  Google Scholar 

  60. Hu, B., Guo, Y., Zou, X., et al.: Controlling mechanism of absence seizures by deep brain stimulus applied on subthalamic nucleus. Cognit. Neurodyn. 12, 103–119 (2018)

    Article  Google Scholar 

  61. Chen, M., Guo, D., et al.: Bidirectional control of absence seizures by the basal ganglia: a computational evidence. PLoS Comput. Biol. 10(3), e1003495 (2014)

    Article  Google Scholar 

  62. Li, J., Tang, J., Ma, J., Du, M., Wang, R., Wu, Y.: Dynamic transition of neuronal firing induced by abnormal astrocytic glutamate oscillation. Sci. Rep. 6, 32343 (2016)

    Article  Google Scholar 

  63. Mondal, A., Upadhyay, R.K., Ma, J., et al.: Bifurcation analysis and diverse firing activities of a modified excitable neuron model. Cognit. Neurodyn. 13(4), 393–407 (2019)

    Article  Google Scholar 

  64. Zhang, T., Pan, X., Xu, X., Wang, R.B.: A cortical model with multi-layers to study visual attentional modulation of neurons at the synaptic level. Cognit. Neurodyn. 13(6), 579–599 (2019)

    Article  Google Scholar 

  65. Bera, B.K., Ghosh, D., Banerjee, T.: Imperfect traveling chimera states induced by local synaptic gradient coupling. Phys. Rev. E 94(1), 012215 (2016)

    Article  Google Scholar 

  66. Sarbendu, R., Arnob, R., Bera, B.K., et al.: Synchronization and firing patterns of coupled Rulkov neuronal map. Nonlinear Dyn. 94, 785–805 (2018)

    Article  Google Scholar 

  67. Soumen, M., Bidesh, K.B., Dibakar, G., et al.: Chimera states in neuronal networks: a review. Phys. Life Rev. 28, 100–121 (2019)

    Article  Google Scholar 

  68. Bidesh, K., Sarbendu, R., Dibakar, G., et al.: Spike chimera states and firing regularities in neuronal hypernetworks. Chaos 29, 053115 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewer for their careful reading and suggestions. The research was supported by the National Natural Science Foundation of China (Nos. 11872304, 11972292) and Postdoctoral Research Foundation of China (No. 2017M623233).

Author information

Authors and Affiliations

Authors

Contributions

ZS and HZ conceived of the presented idea. ZS developed the theory, performed the numerical modelings and took the lead in writing the manuscript. HZ provided modeling ideas. ZD gave innovation guidance. LD, LY and PX helped to verify the results and give constructive suggestions. All authors discussed the results and contributed to this research.

Corresponding author

Correspondence to Honghui Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Z., Deng, Z., Du, L. et al. Control and analysis of epilepsy waveforms in a disinhibition model of cortex network. Nonlinear Dyn 103, 2063–2079 (2021). https://doi.org/10.1007/s11071-020-06131-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06131-2

Keywords

Navigation