Skip to main content
Log in

Numerical and experimental nonlinear dynamics of a proportional pressure-regulating valve

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A novel direct proportional pressure-regulating valve is presented in this paper, and its working principle is introduced. The pressure of feedback chamber is controlled by two orifices. The lumped parameter double-mass dynamic model considering both the spool mass and the plunger mass is established. The model consists of the subsystem models with hydraulic fluid dynamic, valve mechanic and electromagnetic. The numerical model is validated through experiments. With the model, the spool and pressure dynamics are analysed by comparing the changes of the simulation parameters. The effects of orifice diameters, lap, spring stiffness, viscous damping coefficient on the stability of spool and pressure are investigated. The results show that a fixed relationship between the orifice diameters of the valve can be achieved. A larger overlap is beneficial to improve the stability of the spool. It is aimed to propose a parametric design method for the valve optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A in :

Valve flow area of inlet

A out :

Valve flow area of outlet

A pi :

Piston cross-sectional area

B oil :

Oil bulk modulus

C in :

Flow coefficient of inlet

C out :

Flow coefficient of outlet

C p :

Viscous damping coefficient of plunger

c ps :

Equivalent contact coefficient of viscous friction

C s :

Viscous damping coefficient of spool

d pi :

Diameter of piston

d in :

Diameter of orifice 1

d out :

Diameter of orifice 2

d s :

Diameter of spool

F c :

Contact force between the plunger and the spool

F e :

Electromagnetic forces

F pd :

Damping force

F sp :

Hydraulic force

F ss :

Spring force

i :

Input current

k :

Spring stiffness

K b :

Induction back-EMF coefficient

K i :

Current–force gain

K ps :

Equivalent contact stiffness

K x :

Displacement–force gain

L :

Inductance of the coil

m p :

Plunger mass

m s :

Spool mass

p A :

Pressure of port A

p sp :

Feedback chamber pressure

Q :

Instantaneous flow

Q in :

Flow rate of inlet orifices

Q out :

Flow rate of outlet orifices

R c :

Internal resistance of the coil

s 1 :

Underlap

s 2 :

Overlap

t :

Time

V :

Instantaneous volume

V 0 :

Initial volume of the feedback chamber

x gap :

Gap between the spool and the plunger

x gap0 :

Initial gap when the valve closes

x s :

Spool displacement

x s0 :

Spring pre-compression

μ 0 :

Input voltage

ρ :

Oil density

References

  1. Gao, P., Walker, P.D., Liu, H., Zhou, S.L., Xiang, C.L.: Application of an adaptive tuned vibration absorber on a dual lay-shaft dual clutch transmission powertrain for vibration reduction. Mech Syst Signal Proc 121, 725–744 (2019)

    Article  Google Scholar 

  2. Wu, W., Luo, J.L., Wei, C.H., Yuan, S.H.: Design and control of a hydro-mechanical transmission for all-terrain vehicle. Mech. Mach. Theory 154, 104052 (2020)

    Article  Google Scholar 

  3. Dong, P., Liu, Y.F., Tenberge, P., Xu, X.Y.: Design and analysis of a novel multi-speed automatic transmission with four degrees-of-freedom. Mech. Mach. Theory 108, 83–96 (2017)

    Article  Google Scholar 

  4. Al-Zughaibi, A., Xue, Y.Q., Grosvenor, R., Okon, A.: Design and investigation of pole assignment controller for driving nonlinear electro hydraulic actuator with new active suspension system model. Proc. Inst. Mech. Eng. Part Automob. Eng. 233(13), 3460–3479 (2019)

    Article  Google Scholar 

  5. Ye, S.G., Zhang, J.H., Xu, B., Hou, L., Xiang, J.W., Tang, H.S.: A theoretical dynamic model to study the vibration response characteristics of an axial piston pump. Mech. Syst. Signal Proc. 150, 107237 (2021)

    Article  Google Scholar 

  6. Gao, B.Z., Li, X., Zeng, X.H., Chen, H.: Nonlinear control of direct-drive pump-controlled clutch actuator in consideration of pump efficiency map. Control Eng. Pract. 91, 104–110 (2019)

    Article  Google Scholar 

  7. Meng, F., Shi, P., Karimi, H.R., Zhang, H.: Optimal design of an electro-hydraulic valve for heavy-duty vehicle clutch actuator with certain constraints. Mech. Syst. Signal Proc. 68, 491–503 (2016)

    Article  Google Scholar 

  8. Walker, P.D., Zhu, B., Zhang, N.: Nonlinear modeling and analysis of direct acting solenoid valves for clutch control. J. Dyn. Syst. Meas. Contr. 136(5), 051023 (2014)

    Article  Google Scholar 

  9. Yi, Y., Hu, Y.P., Mo, H.: Research on steady characteristics of F-π bridge lectro-hydraulic proportional pressure reducing valve. Int. J. Fluid Mach. Syst. 11(2), 154–162 (2018)

    Article  Google Scholar 

  10. Ko, Y.-R., Kim, T.-H.: Feedforward plus feedback control of an electro-hydraulic valve system using a proportional control valve. Actuators 9(2), 45 (2020)

    Article  Google Scholar 

  11. Li, Y., Wang, Q.F.: Adaptive robust tracking control of a proportional pressure-reducing valve with dead zone and hysteresis. Trans. Inst. Meas. Control 40(7), 2151–2166 (2018)

    Article  Google Scholar 

  12. Ershkov, S.V.: About existence of stationary points for the Arnold–Beltrami–Childress (ABC) flow. Appl. Math. Comput. 276, 379–383 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Li, L., Yan, H., Zhang, H.X., Li, J.: Numerical simulation and experimental research of the flow force and forced vibration in the nozzle-flapper valve. Mech. Syst. Signal Proc. 99, 550–566 (2018)

    Article  Google Scholar 

  14. Lisowski, E., Filo, G., Rajda, J.: Analysis of flow forces in the initial phase of throttle gap opening in a proportional control valve. Flow Meas. Instrum. 59, 157–167 (2018)

    Article  Google Scholar 

  15. Ye, S.G., Zhang, J.H., Xu, B., Zhu, S.Q., Xiang, J.W., Tang, H.S.: Theoretical investigation of the contributions of the excitation forces to the vibration of an axial piston pump. Mech. Syst. Signal Proc. 129, 201–217 (2019)

    Article  Google Scholar 

  16. Zanj, A., Karimi, H., Gholi, A.J., Shafiee, M.: Dynamic modeling of indirect hydro-control valve—bondgraph approach. Simul. Model. Pract. Theory 28, 65–80 (2012)

    Article  Google Scholar 

  17. Suzuki, K., Nakamura, I., Thoma, J.U.: Pressure regulator valve by bondgraph. Simul. Pract. Theory 7(5–6), 603–611 (1999)

    Article  Google Scholar 

  18. Zanj, A., He, F.: Non-linear analysis of hydro-mechanical interactions in control devices during transient period: bond graph approach. Simul.-Trans. Soc. Model. Simul. Int. 95, 845–860 (2019)

    Google Scholar 

  19. Wu, S., Zhao, X.Y., Li, C.F., Jiao, Z.X., Qu, Y.F.: Multi-objective optimization of a hollow plunger type solenoid for high speed on/off valve. IEEE Trans. Ind. Electron. 65(4), 3115–3124 (2017)

    Article  Google Scholar 

  20. Roemer, D.B., Bech, M.M., Johansen, P., Pedersen, H.C.: Optimum design of a moving coil actuator for fast-switching valves in digital hydraulic pumps and motors. IEEE-ASME Trans. Mechatron. 20(6), 2761–2770 (2015)

    Article  Google Scholar 

  21. Filo, G., Lisowski, E., Rajda, J.: Pressure loss reduction in an innovative directional poppet control valve. Energies 13(12), 1349 (2020)

    Article  Google Scholar 

  22. Lee, G.S.: Design improvement of a linear control solenoid valve using mul-tiphysics simulation. Mechanika 24(3), 352–359 (2018)

    Article  Google Scholar 

  23. Ramirez-Laboreo, E., Sagues, C.: Reluctance actuator characterization via FEM simulations and experimental tests. Mechatronics 56, 58–66 (2018)

    Article  Google Scholar 

  24. Fan, X.W., Fang, M.L., He, Y.Y., Song, T.: Modeling and dynamic analysis of a pilot-operated pressure-regulating solenoid valve used in automatic transmission with bond graphs. J. Braz. Soc. Mech. Sci. Eng. 41(9), 372 (2019)

    Article  Google Scholar 

  25. Jian, H.C., Wei, W., Li, H.C., Yan, Q.D.: Optimization of a pressure control valve for high power automatic transmission considering stability. Mech. Syst. Signal Proc. 101, 182–196 (2018)

    Article  Google Scholar 

  26. Wei, W., Jian, H.C., Yan, Q.D., Luo, X.M., Wu, X.H.: Nonlinear modeling and stability analysis of a pilot-operated valve-control hydraulic system. Adv. Mech. Eng. 10(11), 1687814018810660 (2018)

    Article  Google Scholar 

  27. Meng, F., Zhang, H., Cao, D.P., Chen, H.Y.: System modeling, coupling analysis, and experimental validation of a proportional pressure valve with pulse width modulation control. IEEE-ASME Trans. Mechatron. 21(3), 1742–1753 (2015)

    Article  Google Scholar 

  28. Yang, K.U., Hur, J.G., Kim, G.J., Kim, D.H.: Non-linear modeling and dynamic analysis of hydraulic control valve; effect of a decision factor between experiment and numerical simulation. Nonlinear Dyn. 69(4), 2135–2146 (2012)

    Article  Google Scholar 

  29. Afshari, H.H., Zanj, A., Novinzadeh, A.B.: Dynamic analysis of a nonlinear pressure regulator using bondgraph simulation technique. Simul. Model. Pract. Theory 18(2), 240–252 (2010)

    Article  Google Scholar 

  30. Wang, S.M., Cai, C.K., Zuo, Z.Q., Yan, H., Dong, L.J.: Study on identification method of viscous damping coefficient of electro hydraulic servo valve spool. Aerosp. Control 36(1), 92–97 (2018)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. U1864210).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Wei, C., Zhou, J. et al. Numerical and experimental nonlinear dynamics of a proportional pressure-regulating valve. Nonlinear Dyn 103, 1415–1425 (2021). https://doi.org/10.1007/s11071-020-06125-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06125-0

Keywords

Navigation