Skip to main content
Log in

A non-autonomous conservative system and its reconstitution in integral domain

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Non-autonomous conservative system with time-dependent stimulus has rarely been studied in literature. In this paper, we present a two-dimensional non-autonomous conservative system. It belongs to the category of non-Hamiltonian conservative system, and its dynamical properties are uncovered by kinetic and energy-based analyses. Nested chaotic and quasi-periodic motions, which are volume-conservative but not energy-conservative, are observed under different initial conditions. The topological structures of these conservative motions are closely related to the isoenergetic lines of the governing Hamiltonian function. Furthermore, this non-autonomous conservative system is reconstituted in integral domain. Based on the reformed time-varying equilibrium points and isoenergetic lines, the reconstituted conservative motions are further analyzed. Finally, PSIM circuit simulations are performed to verify the reconstituted conservative motions in the integral domain. As can be seen, the characteristics of the volume-conservative motions are thoroughly interpreted in the original and integral state variable domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li, G.L., Yue, Y., Xie, J.H., Grebogi, C.: Multistability in a quasiperiodically forced piecewise smooth dynamical system. Commun. Nonlinear Sci. Numer. Simul. 84, 105165 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  2. Perre, R.M., Carneiro, B.P., Méndez-Bermúdez, J.A., Leonel, E.D., De Oliveira, J.A.: On the dynamics of two-dimensional dissipative discontinuous maps. Chaos, Solitons Fractals 131, 109520 (2020)

    Article  MathSciNet  Google Scholar 

  3. Manchein, C., Beims, M.W.: Conservative generalized bifurcation diagrams. Phys. Lett. A 377(10–11), 789–793 (2013)

    Article  Google Scholar 

  4. Miranda-Colorado, R.: Parameter identification of conservative Hamiltonian systems using first integrals. Appl. Math. Comput. 369, 124860 (2020)

    MathSciNet  MATH  Google Scholar 

  5. Yuan, F., Jin, Y., Li, Y.X.: Self-reproducing chaos and bursting oscillation analysis in a meminductor-based conservative system. Chaos 30(5), 053127 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Qi, G.Y., Hu, J.B., Wang, Z.: Modeling of a Hamiltonian conservative chaotic system and its mechanism routes from periodic to quasiperiodic, chaos and strong chaos. Appl. Math. Modell. 78, 350–365 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Deng, Y., Li, Y.X.: A memristive conservative chaotic circuit consisting of a memristor and a capacitor. Chaos 30(1), 013120 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhou, M.J., Wang, C.H.: A novel image encryption scheme based on conservative hyperchaotic system and closed-loop diffusion between blocks. Signal. Process. 171, 107484 (2020)

    Article  Google Scholar 

  9. Dong, E.Z., Yuan, M.F., Du, S.Z., Chen, Z.Q.: A new class of Hamiltonian conservative chaotic systems with multistability and design of pseudo-random number generator. Appl. Math. Modell. 73, 40–71 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wang, N., Zhang, G.S., Bao, H.: Infinitely many coexisting conservative flows in a 4D conservative system inspired by LC circuit. Nonlinear Dyn. 99, 3197–3216 (2020)

    Article  Google Scholar 

  11. Qi, G.Y.: Modelings and mechanism analysis underlying both the 4D Euler equations and Hamiltonian conservative chaotic systems. Nonlinear Dyn. 95(3), 2063–2077 (2019)

    Article  MATH  Google Scholar 

  12. Jafari, S., Sprott, J.C., Dehghan, S.: Categories of conservative flows. Int. J. Bifurcation Chaos 29(02), 1950021 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Heidel, J., Zhang, F.: Nonchaotic and chaotic behavior in three-dimensional quadratic systems: Five-one conservative cases. Int. J. Bifurcation Chaos 17(06), 2049–2072 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sprott, J.C.: Some simple chaotic flows. Phys. Rev. E 50(2), R647 (1994)

    Article  MathSciNet  Google Scholar 

  15. Messias, M., Reinol, A.C.: On the existence of periodic orbits and KAM tori in the Sprott A system: a special case of the Nosé-Hoover oscillator. Nonlinear Dyn. 92(3), 1287–1297 (2018)

    Article  MATH  Google Scholar 

  16. Cang, S.J., Li, Y., Kang, Z.J., Wang, Z.H.: Generating multicluster conservative chaotic flows from a generalized Sprott-A system. Chaos, Solitons Fractals 133, 109651 (2020)

    Article  MathSciNet  Google Scholar 

  17. Cang, S.J., Li, Y., Xue, W., Wang, Z.H., Chen, Z.Q.: Conservative chaos and invariant tori in the modified Sprott A system. Nonlinear Dyn. 99(2), 1699–1708 (2020)

    Article  Google Scholar 

  18. Jia, H.Y., Shi, W.X., Wang, L., Qi, G.Y.: Energy analysis of Sprott-A system and generation of a new Hamiltonian conservative chaotic system with coexisting hidden attractors. Chaos, Solitons Fractals 133, 109635 (2020)

    Article  MathSciNet  Google Scholar 

  19. Qi, G.Y., Hu, J.B.: Modelling of both energy and volume conservative chaotic systems and their mechanism analyses. Commun. Nonlinear Sci. Numer. Simul. 84, 105171 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Vaidyanathan, S., Volos, C.: Analysis and adaptive control of a novel 3-D conservative no-equilibrium chaotic system. Arch. Control Sci. 25(3), 333–353 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cang, S.J., Wu, A.G., Zhang, R.Y., Wang, Z.H., Chen, Z.Q.: Conservative chaos in a class of nonconservative systems: theoretical analysis and numerical demonstrations. Int. J. Bifurcation Chaos 28(07), 1850087 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gottlieb, H.P.W., Sprott, J.C.: Simplest driven conservative chaotic oscillator. Phys. Lett. A 291(6), 385–388 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sprott, J.C., Jafari, S., Khalaf, A.J.M., Kapitaniak, T.: Megastability: coexistence of a countable infinity of nested attractors in a periodically-forced oscillator with spatially-periodic damping. Eur. Phys. J. Spec. Top. 226(9), 1979–1985 (2017)

    Article  Google Scholar 

  24. Ma, J., Wu, F.Q., Ren, G.D., Tang, J.: A class of initials-dependent dynamical systems. Appl. Math. Comput. 298, 65–76 (2017)

    MathSciNet  MATH  Google Scholar 

  25. Chang, H., Li, Y.X., Yuan, F., Chen, G.R.: Extreme multistability with hidden attractors in a simplest memristor-based circuit. Int. J. Bifurcation Chaos 29(06), 1950086 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, C.N., Wang, Y., Ma, J.: Calculation of Hamilton energy function of dynamical system by using Helmholtz theorem. Acta Phys. Sin. 65(24), 240501 (2016)

    Article  Google Scholar 

  27. Singh, J.P., Roy, B.K.: Five new 4-D autonomous conservative chaotic systems with various type of non-hyperbolic and lines of equilibria. Chaos, Solitons Fractals 114, 81–91 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Chen, M., Qi, J.W., Wu, H.G., Xu, Q., Bao, B.C.: Bifurcation analyses and hardware experiments for bursting dynamics in non-autonomous memristive FitzHugh-Nagumo circuit. Sci. China Technol. Sci. 63, 1035–1044 (2020)

    Article  Google Scholar 

  29. Wei, Z.C., Sprott, J.C., Chen, H.: Elementary quadratic chaotic flows with a single non-hyperbolic equilibrium. Phys. Lett. A 379(37), 2184–2187 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, C.L., Li, H.M., Li, W., Tong, Y.N., Zhang, J., Wei, D.Q., Li, F.D.: Dynamics, implementation and stability of a chaotic system with coexistence of hyperbolic and non-hyperbolic equilibria. AEU Int. J. Electron. Commun. 84, 199–205 (2018)

    Article  Google Scholar 

  31. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Phys. D 16(3), 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  32. Quiroz-Juarez, M.A., Vázquez-Medina, R., Ryzhii, E., Ryzhii, M., Aragón, J.L.: Quasiperiodicity route to chaos in cardiac conduction model. Commun. Nonlinear Sci. Numer. Simul. 42, 370–378 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Natiq, H., Banerjee, S., Ariffin, M.R.K., Said, M.R.M.: Can hyperchaotic maps with high complexity produce multistability? Chaos 29(1), 011103 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Vo, T.P., Shaverdi, Y., Khalaf, A.J.M., Alsaadi, F.E., Hayat, T., Pham, V.T.: A giga-stable oscillator with hidden and self-excited attractors: a megastable oscillator forced by his twin. Entropy 21(5), 535 (2019)

    Article  MathSciNet  Google Scholar 

  35. Chen, B., Rajagopal, K., Hamarash, I.I., Karthikeyan, A., Hussain, I.: Simple megastable oscillators with different types of attractors; tori, chaotic and hyperchaotic ones. Eur. Phys. J. Spec. Top. 229, 1155–1161 (2020)

    Article  Google Scholar 

  36. Lambruschini, C.P.: Bifurcation phenomena in a system of two-level atoms in front of a phase-conjugate mirror. Opt. Commun. 77(2–3), 157–162 (1990)

    Article  Google Scholar 

  37. Chen, M., Sun, M.X., Bao, H., Hu, Y.H., Bao, B.C.: Flux–charge analysis of two-memristor-based Chua’s circuit: dimensionality decreasing model for detecting extreme multistability. IEEE Trans. Ind. Electron. 67(3), 2197–2206 (2020)

    Article  Google Scholar 

  38. Corinto, F., Marco, M.D., Forti, M., Chua, L.: Nonlinear networks with mem-elements: complex dynamics via flux-charge analysis method. IEEE Trans. Cybern. 50(11), 4758–4771 (2020)

    Article  Google Scholar 

  39. Min, F.H., Li, C., Zhang, L., Li, C.B.: Initial value-related dynamical analysis of the memristor-based system with reduced dimensions and its chaotic synchronization via adaptive sliding mode control method. Chin. J. Phys. 58, 117–131 (2019)

    Article  Google Scholar 

  40. Chen, M., Sun, M., Bao, B.C., Wu, H.G., Xu, Q., Wang, J.: Controlling extreme multistability of memristor emulator-based dynamical circuit in flux–charge domain. Nonlinear Dyn. 91(2), 1395–1412 (2018)

    Article  Google Scholar 

  41. Song, X.L., Jin, W.Y., Ma, J.: Energy dependence on the electric activities of a neuron. Chin. Phys. B 24(12), 128710 (2015)

    Article  Google Scholar 

  42. Li, C.B., Sprott, J.C.: An infinite 3-D quasiperiodic lattice of chaotic attractors. Phys. Lett. A 382(8), 581–587 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. Yuan, F., Deng, Y., Li, Y., Wang, G.Y.: The amplitude, frequency and parameter space boosting in a memristor-meminductor-based circuit. Nonlinear Dyn. 96(1), 389–405 (2019)

    Article  MATH  Google Scholar 

  44. Tang, W.K.S., Zhong, G.Q., Chen, G., Man, K.F.: Generation of N-scroll attractors via sine function. IEEE Trans. Circuits Syst. I 48(11), 1369–1372 (2001)

    Article  Google Scholar 

  45. Bao, H., Chen, M., Wu, H.G., Bao, B.C.: Memristor initial-boosted coexisting plane bifurcations and its extreme multi-stability reconstitution in two-memristor-based dynamical system. Sci. China Technol. Sci. 63(4), 603–613 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Numbers 51777016, 61801054, and 61601062, and the Natural Science Foundation of Jiangsu Province, China, under Grant Number BK20191451.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bocheng Bao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest. These authors contribute equally to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Wang, C., Wu, H. et al. A non-autonomous conservative system and its reconstitution in integral domain. Nonlinear Dyn 103, 643–655 (2021). https://doi.org/10.1007/s11071-020-06115-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06115-2

Keywords

Navigation