Skip to main content

Advertisement

Log in

Enhancing the performance of a bistable energy harvesting device via the cross-entropy method

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This work deals with the solution of a non-convex optimization problem to enhance the performance of an energy harvesting device, which involves a nonlinear objective function and a discontinuous constraint. This optimization problem, which seeks to find a suitable configuration of parameters that maximize the electrical power recovered by a bistable energy harvesting system, is formulated in terms of the dynamical system response and a binary classifier obtained from 0 to 1 test for chaos. A stochastic solution strategy that combines penalization and the cross-entropy method is proposed and numerically tested. Computational experiments are conducted to address the performance of the proposed optimization approach by comparison with a reference solution, obtained via an exhaustive search in a refined numerical mesh. The obtained results illustrate the effectiveness and robustness of the cross-entropy optimization strategy (even in the presence of noise or in moderately higher dimensions), showing that the proposed framework may be a very useful and powerful tool to solve optimization problems involving nonlinear energy harvesting dynamical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Code availability

To facilitate the reproduction of this paper results, as well as to popularize the CE method use by the community of nonlinear dynamical systems, the code used in the simulations is available in the following repository: https://americocunhajr.github.io/HarvesterOpt

References

  1. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Enhancement of power harvesting from piezoaeroelastic systems. Nonlinear Dyn. 68, 531–541 (2012). https://doi.org/10.1007/s11071-011-0234-9

    Article  Google Scholar 

  2. Barbosa, W.O.V., De Paula, A.S., Savi, M.A., Inman, D.J.: Chaos control applied to piezoelectric vibration-based energy harvesting systems. Eur. Phys. J. Spec. Top. 224, 2787–2801 (2015). https://doi.org/10.1140/epjst/e2015-02589-1

    Article  Google Scholar 

  3. Benacchio, S., Malher, A., Boisson, J., Touzé, C.: Design of a magnetic vibration absorber with tunable stiffnesses. Nonlinear Dyn. 85, 893–911 (2016). https://doi.org/10.1007/s11071-016-2731-3

    Article  MathSciNet  Google Scholar 

  4. Bernardini, D., Litak, G.: An overview of 0–1 test for chaos. J. Braz. Soc. Mech. Sci. Eng. 38, 1433–1450 (2016). https://doi.org/10.1007/s40430-015-0453-y

    Article  Google Scholar 

  5. Bhatti, N.A., Alizai, M.H., Syed, A.A., Mottola, L.: Energy harvesting and wireless transfer in sensor network applications: concepts and experiences. ACM Trans. Sens. Netw. 12, 1–40 (2016). https://doi.org/10.1145/2915918

    Article  Google Scholar 

  6. Bonnans, J., Gilbert, J.C., Lemarechal, C., Sagastizábal, C.A.: Numerical Optimization: Theoretical and Practical Aspects, 2nd edn. Springer, Berlin (2009)

    MATH  Google Scholar 

  7. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  8. Catacuzzeno, L., Orfei, F., Michele, A.D., Sforna, L., Franciolini, F., Gammaitoni, L.: Energy harvesting from a bio cell. Nano Energy 56, 823–827 (2019)

    Article  Google Scholar 

  9. Cottone, F., Vocca, H., Gammaitoni, L.: Nonlinear energy harvesting. Phys. Rev. Lett. 102, 080601 (2009). https://doi.org/10.1103/PhysRevLett.102.080601

    Article  Google Scholar 

  10. Cunha Jr, A.: Cross-entropy optimization of bistable energy harvesting system (25 samples) (2020). https://youtu.be/0EvzdVXlPqA. Accessed 28 March 2020

  11. Cunha, A.: Cross-entropy optimization of bistable energy harvesting system (50 samples) (2020). https://youtu.be/-JB3eniIdDY. Accessed 28 March 2020

  12. Cunha Jr, A.: Cross-entropy optimization of bistable energy harvesting system (75 samples) (2020). https://youtu.be/uIZM4SjCbrw. Accessed 28 March 2020

  13. Cunha Jr., A., Nasser, R., Sampaio, R., Lopes, H., Breitman, K.: Uncertainty quantification through Monte Carlo method in a cloud computing setting. Comput. Phys. Commun. 185, 1355–1363 (2014). https://doi.org/10.1016/j.cpc.2014.01.006

    Article  Google Scholar 

  14. Cunha Jr., A., Soize, C., Sampaio, R.: Computational modeling of the nonlinear stochastic dynamics of horizontal drillstrings. Comput. Mech. 56, 849–878 (2015). https://doi.org/10.1007/s00466-015-1206-6

    Article  MathSciNet  MATH  Google Scholar 

  15. Dantas, E.: A cross-entropy strategy for parameters identification problems. Universidade do Estado do Rio de Janeiro, Monograph (2019). https://dx.doi.org/10.13140/RG.2.2.18045.51688

  16. Dantas, E., Cunha Jr, A., Silva, T.A.N.: A numerical procedure based on cross-entropy method for stiffness identification. In: 5th International Conference on Structural Engineering Dynamics (ICEDyn 2019), Viana do Castelo, Portugal (2019)

  17. Dantas, E., Cunha Jr, A., Soeiro, F.J.C.P., Cayres, B.C., Weber, H.I.: An inverse problem via cross-entropy method for calibration of a drill string torsional dynamic model. In: 25th ABCM International Congress of Mechanical Engineering (COBEM 2019), Uberlândia, Brazil (2019). http://dx.doi.org/10.26678/abcm.cobem2019.cob2019-2216

  18. Daqaq, M.F., Crespo, R.S., Ha, S.: On the efficacy of charging a battery using a chaotic energy harvester. Nonlinear Dyn. 99, 1525–1537 (2020). https://doi.org/10.1007/s11071-019-05372-0

    Article  Google Scholar 

  19. De Boer, P., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A tutorial on the cross-entropy method. Ann. Oper. Res. 134, 19–67 (2005). https://doi.org/10.1007/s10479-005-5724-z

    Article  MathSciNet  MATH  Google Scholar 

  20. de la Roca, L., Peterson, J.V.L.L., Pereira, M.C., Cunha Jr, A.: Control of chaos via OGY method on a bistable energy harvester. In: 25th ABCM International Congress of Mechanical Engineering (COBEM 2019), Uberlândia, Brazil (2019). http://dx.doi.org/10.26678/abcm.cobem2019.cob2019-1970

  21. Dekemele, K., Van Torre, P., Loccufier, M.: Performance and tuning of a chaotic bi-stable NES to mitigate transient vibrations. Nonlinear Dyn. 98, 1831–1851 (2019). https://doi.org/10.1007/s11071-019-05291-0

    Article  Google Scholar 

  22. Erturk, A., Hoffmann, J., Inman, D.J.: A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl. Phys. Lett. 94, 254102 (2009). https://doi.org/10.1063/1.3159815

    Article  Google Scholar 

  23. Gallo, C.A., Tofoli, F.L., Rade, D.A., Steffen Jr., V.: Piezoelectric actuators applied to neutralize mechanical vibrations. J. Vib. Control 18, 1650–1660 (2012). https://doi.org/10.1177/1077546311422549

    Article  MathSciNet  Google Scholar 

  24. Gammaitoni, L.: There’s plenty of energy at the bottom (micro and nano scale nonlinear noise harvesting). Contemp. Phys. 53, 119–135 (2012). https://doi.org/10.1080/00107514.2011.647793

    Article  Google Scholar 

  25. Ghidey, H.: Reliability-based design optimization with cross-entropy method. Master’s thesis, Norwegian University of Science and Technology, Trondheim (2015)

  26. Ghouli, Z., Hamdi, M., Belhaq, M.: Energy harvesting from quasi-periodic vibrations using electromagnetic coupling with delay. Nonlinear Dyn. 89, 1625–1636 (2017). https://doi.org/10.1007/s11071-017-3539-5

    Article  Google Scholar 

  27. Godoy, T.C., Trindade, M.A.: Effect of parametric uncertainties on the performance of a piezoelectric energy harvesting device. J. Braz. Soc. Mech. Sci. Eng. 34, 552–560 (2012). https://doi.org/10.1590/S1678-58782012000600003

    Article  Google Scholar 

  28. Gottwald, G.A., Melbourne, I.: A new test for chaos in deterministic systems. Proc. R. Soc. Lond. Ser. A 460, 603–611 (2004). https://doi.org/10.1098/rspa.2003.1183

    Article  MathSciNet  MATH  Google Scholar 

  29. Gottwald, G.A., Melbourne, I.: On the implementation of the 0–1 test for chaos. SIAM J. Appl. Dyn. Syst. 8, 129–145 (2009). https://doi.org/10.1137/080718851

    Article  MathSciNet  MATH  Google Scholar 

  30. Gottwald, G.A., Melbourne, I.: On the validity of the 0–1 test for chaos. Nonlinearity 22, 1367–1382 (2009). https://doi.org/10.1088/0951-7715/22/6/006

    Article  MathSciNet  MATH  Google Scholar 

  31. Gottwald, G.A., Melbourne, I.: The 0–1 Test for Chaos: A review, vol. 915. Springer, Berlin (2016). https://doi.org/10.1007/978-3-662-48410-4

    Book  MATH  Google Scholar 

  32. Harne, R.L.: Theoretical investigations of energy harvesting efficiency from structural vibrations using piezoelectric and electromagnetic oscillators. J. Acoust. Soc. Am. 132, 162–172 (2012). https://doi.org/10.1121/1.4725765

    Article  Google Scholar 

  33. Ibrahim, A., Towfighian, S., Younis, M., Su, Q.: Magnetoelastic beam with extended polymer for low frequency vibration energy harvesting. In: Meyendorf, N.G., Matikas, T.E, Peters, K.J. (eds.) Smart Materials and Nondestructive Evaluation for Energy Systems 2016, International Society for Optics and Photonics, SPIE, vol. 9806, pp. 71–85 (2016). https://doi.org/10.1117/12.2219276

  34. Issa, M.V.S., Cunha Jr, A., Soeiro, F.J.C.P., Pereira, A.: Structural optimization using the cross-entropy method. In: XXXVIII Congresso Nacional de Matemática Aplicada e Computacional (CNMAC 2018), Campinas, Brazil (2018). https://dx.doi.org/10.5540/03.2018.006.02.0443

  35. Kroese, D.P., Taimre, T., Botev, Z.I.: Handbook of Monte Carlo Methods. Wiley, Hoboken (2011)

    Book  Google Scholar 

  36. Kroese, D.P., Rubinstein, R.Y., Cohen, I., Porotsky, S., Taimre, T.: Cross-Entropy Method, pp. 326–333. Springer, Berlin (2013). https://doi.org/10.1007/978-1-4419-1153-7_131

    Book  Google Scholar 

  37. Leadenham, S., Erturk, A.: Mechanically and electrically nonlinear non-ideal piezoelectric energy harvesting framework with experimental validations. Nonlinear Dyn. 99, 625–641 (2020). https://doi.org/10.1007/s11071-019-05091-6

    Article  Google Scholar 

  38. Liu, W., Xu, X., Chen, F., Liu, Y., Li, S., Liu, L., Chen, Y.: A review of research on the closed thermodynamic cycles of ocean thermal energy conversion. Renew. Sustain. Energy Rev. (2019). https://doi.org/10.1016/j.rser.2019.109581

    Article  Google Scholar 

  39. Lopes, V.G., Peterson, J.V.L.L., Cunha Jr, A.: Numerical study of parameters influence over the dynamics of a piezo-magneto-elastic energy harvesting device. In: XXXVII Congresso Nacional de Matemática Aplicada e Computacional (CNMAC 2017), São José dos Campos, Brazil (2017). http://dx.doi.org/10.5540/03.2018.006.01.0407

  40. Lopes, V.G., Peterson, J.V.L.L., Cunha Jr, A.: Nonlinear Characterization of a Bistable Energy Harvester Dynamical System. In: Belhaq, M. (ed.) Topics in Nonlinear Mechanics and Physics: Selected Papers from CSNDD 2018 (Springer Proceedings in Physics), Springer, Singapore, pp. 71–88 (2019). https://dx.doi.org/10.1007/978-981-13-9463-8_3

  41. Lopes, V.G., Peterson, J.V.L.L., Cunha Jr., A.: The nonlinear dynamics of a bistable energy harvesting system with colored noise disturbances. J. Comput. Interdiscip. Sci. 10, 125 (2019)

    Google Scholar 

  42. López-Suárez, M., Rurali, R., Gammaitoni, L., Abadal, G.: Nanostructured graphene for energy harvesting. Phys. Rev. B 84, 161401 (2011). https://doi.org/10.1103/PhysRevB.84.161401

    Article  Google Scholar 

  43. Mangla, C., Ahmad, M., Uddin, M.: Optimization of complex nonlinear systems using genetic algorithm. Int. J. Inf. Technol. 1, 2–8 (2020). https://doi.org/10.1007/s41870-020-00421-z

    Article  Google Scholar 

  44. Nabavi ,S., Zhang, L.: MEMS piezoelectric energy harvester design and optimization based on Genetic Algorithm. In: 2016 IEEE International Ultrasonics Symposium (IUS), pp. 1–4 (2016). https://doi.org/10.1109/ULTSYM.2016.7728786

  45. Nocedal, J., Wright, S.: Numer. Optim., 2nd edn. Springer, Berlin (2006)

    Google Scholar 

  46. Peterson, J.V.L.L., Lopes, V.G., Cunha Jr, A.: Maximization of the electrical power generated by a piezo-magneto-elastic energy harvesting device. In: XXXVI Congresso Nacional de Matemática Aplicada e Computacional (CNMAC 2016), Gramado, Brazil (2016). http://dx.doi.org/10.5540/03.2017.005.01.0200

  47. Pfenniger, A., Stahel, A., Koch, V.M., Obrist, D., Vogel, R.: Energy harvesting through arterial wall deformation: a FEM approach to fluid-structure interactions and magneto-hydrodynamics. Appl. Math. Model. 38, 3325–3338 (2014). https://doi.org/10.1016/j.apm.2013.11.051

    Article  Google Scholar 

  48. Priya, S., Inman, D.J.: Energy Harvesting Technologies. Springer, Berlin (2009)

    Book  Google Scholar 

  49. Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on computational intelligence for identification of nonlinear dynamical systems. Nonlinear Dyn. 99, 1709–1761 (2020). https://doi.org/10.1007/s11071-019-05430-7

    Article  Google Scholar 

  50. Ramlan, R., Brennan, M.J., Mace, B.R., Kovacic, I.: Potential benefits of a non-linear stiffness in an energy harvesting device. Nonlinear Dyn. 59, 545–558 (2010). https://doi.org/10.1007/s11071-009-9561-5

    Article  MATH  Google Scholar 

  51. Rechenbach, B., Willatzen, M., Lassen, B.: Theoretical study of the electromechanical efficiency of a loaded tubular dielectric elastomer actuator. Appl. Math. Model. 40, 1232–1246 (2016). https://doi.org/10.1016/j.apm.2015.06.029

    Article  MathSciNet  MATH  Google Scholar 

  52. Rocha, R.T., Balthazar, J.M., Tusset, A.M., de Souza, S.L.T., Janzen, F.C., Arbex, H.C.: On a non-ideal magnetic levitation system: nonlinear dynamical behavior and energy harvesting analyses. Nonlinear Dyn. 95, 3423–3438 (2019). https://doi.org/10.1007/s11071-019-04765-5

    Article  MATH  Google Scholar 

  53. Rubinstein, R.Y.: Optimization of computer simulation models with rare events. Eur. J. Oper. Res. 99, 89–112 (1997). https://doi.org/10.1016/S0377-2217(96)00385-2

    Article  Google Scholar 

  54. Rubinstein, R.Y.: The cross-entropy method for combinatorial and continuous optimization. Methodol. Comput. Appl. Probab. 2, 127–190 (1999). https://doi.org/10.1023/A:1010091220143

    Article  MathSciNet  MATH  Google Scholar 

  55. Rubinstein, R.Y., Glynn, P.W.: How to deal with the curse of dimensionality of likelihood ratios in Monte Carlo simulation. Stoch. Models 25(4), 547–568 (2009). https://doi.org/10.1080/15326340903291248

    Article  MathSciNet  MATH  Google Scholar 

  56. Rubinstein, R.Y., Kroese, D.P.: The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization. Information Science and Statistics, Springer-Verlag, Monte-Carlo Simulation and Machine Learning (2004)

  57. Rubinstein, R.Y., Kroese, D.P.: Simulation and the Monte Carlo Method. Wiley Series in Probability and Statistics, 3rd edn. Wiley, Hoboken (2016)

  58. Selvan, K.V., Ali, M.S.M.: Micro-scale energy harvesting devices: review of methodological performances in the last decade. Renew. Sustain. Energy Rev. 54, 1035–1047 (2016). https://doi.org/10.1016/j.rser.2015.10.046

    Article  Google Scholar 

  59. Spies, P., Pollak, M., Mateu, L.: Handbook of Energy Harvesting Power Supplies and Applications. Pan Stanford, Singapore (2015)

    Book  Google Scholar 

  60. Ouyang, X-Y., Wu, L-B., Zhao, N-N., Gao, C.: Event-triggered adaptive prescribed performance control for a class of pure-feedback stochastic nonlinear systems with input saturation constraints. Int. J. Syst. Sci. 51(12), 2238–2257. https://doi.org/10.1080/00207721.2020.1793232

  61. Trindade, M.A.: Passive and active structural vibration control. In: Lopes Jr., V., Steffen Jr., V., Savi, M. (eds.) Dynamics of Smart Systems and Structures. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29982-2_4

    Chapter  Google Scholar 

  62. Vocca, H., Neri, I., Travasso, F., Gammaitoni, L.: Kinetic energy harvesting with bistable oscillators. Appl. Energy 97, 771–776 (2012). https://doi.org/10.1016/j.apenergy.2011.12.087

    Article  Google Scholar 

  63. Wang, B.: Parameter estimation for ODEs using a cross-entropy approach. Master’s thesis, University of Toronto, Toronto (2012)

  64. Wolszczak, P., Lonkwic, P., Cunha Jr., A., Litak, G., Molski, S.: Robust optimization and uncertainty quantification in the nonlinear mechanics of an elevator brake system. Meccanica 54, 1057–1069 (2019). https://doi.org/10.1007/s11012-019-00992-7

    Article  MathSciNet  Google Scholar 

  65. Yang, T., Cao, Q.: Time delay improves beneficial performance of a novel hybrid energy harvester. Nonlinear Dyn. 96, 1511–1530 (2019). https://doi.org/10.1007/s11071-019-04868-z

    Article  Google Scholar 

  66. Ying, Q., Yuan, W., Hu, N.: Improving the efficiency of harvesting electricity from living trees. J. Renew. Sustain. Energy 7, 1–8 (2015). https://doi.org/10.1063/1.4935577

    Article  Google Scholar 

  67. Zheng, B., Chang, C.J., Gea, H.C.: Topology optimization of energy harvesting devices using piezoelectric materials. Struct. Multidiscip. Optim. 38, 17–23 (2009). https://doi.org/10.1007/s00158-008-0265-0

    Article  Google Scholar 

  68. Zhou, S., Cao, J., Lin, J.: Theoretical analysis and experimental verification for improving energy harvesting performance of nonlinear monostable energy harvesters. Nonlinear Dyn. 86, 1599–1611 (2016). https://doi.org/10.1007/s11071-016-2979-7

    Article  Google Scholar 

Download references

Acknowledgements

Including noise into the objective function is an idea given to the author for the first time in a conference at Morocco by Prof. Luca Gammaitoni (University of Perugia), and more recently by one of the anonymous reviewers. The noisily test case proved to be very useful to illustrate the robustness of the framework presented here. The author is very grateful to both of them for this suggestion. He is also indebted to Dr. Welington de Oliveira (MINES ParisTech), for the fruitful discussions about the mathematical technicalities related to the optimization problem addressed in this work.

Funding

This research received financial support from the Brazilian agencies Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001, and the Carlos Chagas Filho Research Foundation of Rio de Janeiro State (FAPERJ) under the following Grants: 211.304/2015, 210.021/2018, 210.167/2019, and 211.037/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Americo Cunha Jr.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (avi 415 KB)

Supplementary material 2 (avi 479 KB)

Supplementary material 3 (avi 777 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cunha, A. Enhancing the performance of a bistable energy harvesting device via the cross-entropy method. Nonlinear Dyn 103, 137–155 (2021). https://doi.org/10.1007/s11071-020-06109-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06109-0

Keywords

Navigation