Skip to main content
Log in

Stability of similar nonlinear normal modes under random excitation

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Two-DOF nonlinear system under stochastic excitation is considered. It is assumed that the system allows from two up to four nonlinear normal modes (NNMs) with rectilinear trajectories in the system configuration space. Influence of the random excitation to the NNMs stability is analyzed by using the analytical–numerical test, which is an implication of the well-known stability definition by Lyapunov. Boundary of the stability/instability regions is obtained in plane of the system parameters. Stability of the NNMs under deterministic chaos excitation is also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mikhlin, Y.V., Avramov, K.V.: Nonlinear normal modes for vibrating mechanical systems. Review of theoretical developments. Appl. Mech. Rev. 63, 4–20 (2010)

    Article  Google Scholar 

  2. Avramov, K.V., Mikhlin, YuV: Review of applications of nonlinear normal modes for vibrating mechanical systems. Appl. Mech. Rev. 65(2), 20 (2013)

    Article  Google Scholar 

  3. Rosenberg, R.: Nonlinear vibrations of systems with many degrees of freedom. Adv. Appl. Mech. 9, 156–243 (1966)

    Google Scholar 

  4. Schuss, Z.: Theory and Applications of Stochastic Processes, Vol. 170 Applied Mathematical Sciences. Springer, New York (2010)

    Book  Google Scholar 

  5. Preumont, A.: Random Vibration and Spectral Analysis. Kluwer Academic Publishers, New York (1994)

    Book  Google Scholar 

  6. Vanvinckenroye, H., Denoël, V.: Average first-passage time of a quasi-Hamiltonian Mathieu oscillator with parametric and forcing excitations. J. Sound Vib. 406, 328–345 (2017)

    Article  Google Scholar 

  7. Lin, Y.K.Y.-K.: Probabilistic Theory of Structural Dynamics. R.E. Krieger Pub. Co, Malabar (1976)

    Google Scholar 

  8. B. Oksendal, Stochastic Differential Equations: An Introduction with Applications-Fifth Edition, 2003, pp. 1–5

  9. Zhu, W.Q.: Stochastic averaging methods in random vibration. Appl. Mech. Rev. 41(5), 189 (1988)

    Article  Google Scholar 

  10. Roberts, J.J., Spanos, P.P.: Stochastic averaging: an approximate method of solving random vibration problems. Int. J. Non-Linear Mech. 21(2), 111–134 (1986)

    Article  MathSciNet  Google Scholar 

  11. Red-Horse, J., Spanos, P.: A generalization to stochastic averaging in random vibration. Int. J. Non-Linear Mech. 27(1), 85–101 (1992)

    Article  MathSciNet  Google Scholar 

  12. Roberts, J.B., Spanos, P.D.: Random Vibration and Statistical Linearization. Dover Publications, Mineola (2003)

    MATH  Google Scholar 

  13. Socha, L.: Linearization Methods for Stochastic Dynamic Systems, pp. 1–5. Springer, Berlin (2008)

    Book  Google Scholar 

  14. Spanos, P.D., Kougioumtzoglou, I.A.: Galerkin scheme based determination of first-passage probability of nonlinear system response. Struct. Infrast. Eng. 10(10), 1285–1294 (2014)

    Article  Google Scholar 

  15. Grigoriu, M.: Stochastic Calculus: Applications in Science and Engineering. Springer, Birkhäuser (2002)

    Book  Google Scholar 

  16. Naess, A., Gaidai, O.: Monte Carlo methods for estimating the extreme response of dynamical systems. J. Eng. Mech. 134(8), 628–636 (2008)

    Article  Google Scholar 

  17. Kougioumtzoglou, I.A., Spanos, P.D.: Response and first-passage statistics of nonlinear oscillators via a numerical path integral approach. J. Eng. Mech. 139(9), 1207–1217 (2013)

    Article  Google Scholar 

  18. Zhang, Y., Kougioumtzoglou, I.A.: Nonlinear oscillator stochastic response and survival probability determination via the wiener path integral. ASCE ASME J. Risk Uncert. Eng. Syst. B Mech. Eng. 1(2), 021005 (2015)

    Google Scholar 

  19. Kougioumtzoglou, I.A., Zhang, Y., Beer, M.: Softening Duffing oscillator reliability assessment subject to evolutionary stochastic excitation. ASCE ASME J. Risk Uncert. Eng. Syst. A Civ. Eng. 2(2), C4015001 (2016)

    Google Scholar 

  20. Li, J., Chen, J.: Stochastic Dynamics of Structures. Wiley, New York (2009)

    Book  Google Scholar 

  21. Náprstek, J., Král, R.: Evolutionary analysis of Fokker-Planck equation using multi-dimensional Finite Element Method. Proc. Eng. 199, 735–740 (2017)

    Article  Google Scholar 

  22. Schoneman, J.D., Allen, M.S.: Relationships between nonlinear normal modes and response to random inputs. Mech. Syst. Signal Process. 84, 184–199 (2017)

    Article  Google Scholar 

  23. J.D. Schoneman, M.S. Allen. Investigating nonlinear modal energy transfer in a random load environment. In: Nonlinear Dynamics, Vol. 1: Proceedings of the 34th IMAC. A Conference and Exposition on Structural Dynamics (2016) pp. 141–153

  24. Mikhlin, YuV, Shmatko, T.V., Manucharyan, G.V.: Lyapunov definition and stability of regular or chaotic vibration modes in systems with several equilibrium positions. Comput. Struct. 82, 2733–2742 (2004)

    Article  Google Scholar 

  25. Holmes, P.J.: A nonlinear oscillator with a strange attractor. Phil. Trans. Roy. Soc. A 292, 419–448 (1978)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the Ministry of Education and Science of Ukraine (research Project DR 0118U002045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Rudnyeva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhlin, Y.V., Rudnyeva, G.V. Stability of similar nonlinear normal modes under random excitation. Nonlinear Dyn 103, 3407–3415 (2021). https://doi.org/10.1007/s11071-020-06093-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06093-5

Keywords

Navigation