Skip to main content

Advertisement

Log in

Adaptive attack-resilient control for Markov jump system with additive attacks

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the attack-resilient control problem for Markov jump systems (MJSs) with additive attacks. Both the sensor attacks and actuator attacks are taken into account in this paper, which make the attack-resilient control problem particularly complex. Moreover, different from multiplicative sensor attacks, the additive attacks are addressed in this paper. The adaptive laws based on projection operation are designed to ensure that the estimations of the unknown parameters are bounded. Based on the adaptive laws, the novel adaptive attack-resilient control strategy is proposed. Then, through combining the adaptive method and tracking control method, where the target tracking trajectories are the estimate values from adaptive laws, the boundedness and stability of system states are guaranteed in this paper. Finally, the adaptive attack-resilient control strategy is applied into an application example to illustrate the effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Shen, H., Chen, M., Wu, Z., Cao, J., Park, J.H.: Reliable event-triggered asynchronous extended passive control for Semi-Markov jump fuzzy systems and its application. IEEE Trans. Fuzzy Syst. (2019). https://doi.org/10.1109/TFUZZ.2019.2921264

  2. Park, J.H., Lee, T.H., Liu, Y., Chen, J.: Dynamic Systems with Time Delays: Stability and Control. Springer, Singapore (2019)

    Book  Google Scholar 

  3. Shen, M., Zhang, H., Park, J.H.: Observer-based quantized sliding mode \(H_{\infty }\) control of Markov jump systems. Nonlinear Dyn. 92(2), 415–427 (2018)

    Article  Google Scholar 

  4. Qi, W., Zong, G., Karimi, H.R.: Sliding mode control for nonlinear stochastic Semi-Markov switching systems with application to SRMM. IEEE Trans. Ind. Electron. 67(5), 3955–3966 (2020)

    Article  Google Scholar 

  5. Du, C., Li, F., Yang, C.: An improved homogeneous polynomial approach for adaptive sliding mode control of Markov jump systems with actuator faults. IEEE Trans. Autom. Control 65(3), 955–969 (2020)

    Article  MathSciNet  Google Scholar 

  6. Wang, Y., Ahn, C.K., Yan, H., Xie, S.: Fuzzy control and filtering for nonlinear singularly perturbed Markov jump system. IEEE Trans. Cybern. (2020). https://doi.org/10.1109/TCYB.2020.3004226

  7. Qi, W., Park, J.H., Zong, G., Cao, J., Cheng, J.: A fuzzy Lyapunov function approach to positive L1?observer design for positive fuzzy semi-Markovian switching systems with its application. IEEE Trans. Syst. Man Cybern. Syst. (2018). https://doi.org/10.1109/TSMC.2018.2882536

  8. Xu, N., Sun, L.: Synchronization control of Markov jump neural networks with mixed time-varying delay and parameter uncertain based on sample point controller. Nonlinear Dyn. 98(3), 1877–1890 (2019)

    Article  Google Scholar 

  9. Qi, W., Gao, X., Ahn, C.K., Cao, J., Cheng, J.: Fuzzy integral sliding mode control for nonlinear semi-Markovian switching systems with application. IEEE Trans. Syst. Man Cybern. Syst. (2020). https://doi.org/10.1109/TSMC.2020.3034484

  10. Tong, D., Xu, C., Chen, Q., et al.: Sliding mode control for nonlinear stochastic systems with Markovian jumping parameters and mode-dependent time-varying delays. Nonlinear Dyn. 100, 1343–1358 (2020)

    Article  Google Scholar 

  11. Zhang, J., Raissi, T., Li, S.: Non-fragile saturation control of nonlinear positive Markov jump systems with time-varying delays. Nonlinear Dyn. 97(2), 1495–1513 (2019)

    Article  Google Scholar 

  12. Zhang, J., Shi, P., Xia, Y., Yang, H., Wang, S.: Composite disturbance rejection control for Markovian jump systems with external disturbances. Automatica 118, 109019 (2020)

    Article  MathSciNet  Google Scholar 

  13. Shen, M., Zhang, H., Nguang, S.K., Ahn, C.K.: \(H_{\infty }\) output anti-disturbance control of stochastic Markov jump systems with multiple disturbances. IEEE Trans. Syst. Man Cybern. Syst. (2020). https://doi.org/10.1109/TSMC.2020.2981112

    Article  Google Scholar 

  14. Kao, Y., Li, Y., Park, J.H., Cheng, X.: Mittag-Leffler synchronization of delayed fractional memristor neural networks via adaptive control. IEEE Trans. Neural. Netw. Learn. Syst. (2020). https://doi.org/10.1109/TNNLS.2020.2995718

  15. Shi, K., Wang, J., Zhong, S., Tang, Y., Cheng, J.: Hybrid-driven finite-time \(H_{\infty }\) sampling synchronization control for coupling memory complex networks with stochastic cyber attacks. Neurocomputing 387, 241–254 (2020)

    Article  Google Scholar 

  16. Xu, Z., Wu, Z., Su, H., Shi, P., Que, H.: Energy-to-peak filtering of semi-Markov jump systems with mismatched modes. IEEE Trans. Autom. Contr. (2019). https://doi.org/10.1109/TAC.2019.2955014

  17. He, H., Gao, X., Qi, W.: Sampled-data control of asynchronously switched non-linear systems via T-S fuzzy model approach. IET Control Theory A. 11(16), 2817–2823 (2017)

    Article  MathSciNet  Google Scholar 

  18. Gao, X., He, H., Qi, W.: Admissibility analysis for discrete-time singular Markov jump systems with asynchronous switching. Appl. Math. Comput. 313, 431–441 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Cheng, J., Park, J.H., Cao, J., et al.: A hidden mode observation approach to finite-time SOFC of Markovian switching systems with quantization. Nonlinear Dyn. 100, 509–521 (2020)

    Article  Google Scholar 

  20. Kim, S.H.: Dissipative control of Markovian jump fuzzy systems under nonhomogeneity and asynchronism. Nonlinear Dyn. 97, 629–646 (2019)

    Article  Google Scholar 

  21. Shen, H., Wang, T., Chen, M., et al.: Nonfragile mixed \(H_{\infty }/l_2-l_{\infty }\) state estimation for repeated scalar nonlinear systems with Markov jumping parameters and redundant channels. Nonlinear Dyn. 91, 641–654 (2018)

    Article  Google Scholar 

  22. Zhang, D., Shen, Y., Zhou, S., Dong, X., Yu, L.: Distributed secure platoon control of connected vehicles subject to DoS attack: theory and application. IEEE Trans. Syst. Man Cybern. Syst. (2020). https://doi.org/10.1109/TSMC.2020.2968606

  23. Shen, H., Li, F., Cao, J., Wu, Z., Lu, G.: Fuzzy-model-based output feedback reliable control for network-based semi-Markov jump nonlinear systems subject to redundant channels. IEEE Trans. Cybern. (2020). https://doi.org/10.1109/TCYB.2019.2959908

  24. Gu Z., Ahn C.K., Yue D., Xie X.: Event-triggered \(H_{\infty }\) filtering for T-S fuzzy-model-based nonlinear networked systems with multi-sensors against DoS attacks. IEEE Trans. Cybern. https://doi.org/10.1109/TCYB.2020.3030028

  25. Du, Z., Kao, Y., Karimi, H.R., Zhao, X.: Interval type-2 fuzzy sampled-data \(H_{\infty }\) control for nonlinear unreliable net worked control systems. IEEE Trans. Fuzzy Syst. 28(7), 1434–1448 (2020)

  26. Ye, D., Zhang, T.Y., Guo, G.: Stochastic coding detection scheme in cyber-physical systems against replay attack. Inform. Sci. 481, 432–444 (2019)

    Article  MathSciNet  Google Scholar 

  27. Zhao, J., Wang, J., Yin, L.: Detection and control against replay attacks in smart grid. Int. Conf. Comput. Intell. Secur. pp. 624–627 (2016)

  28. Rong, N., Wang, Z.: State-dependent asynchronous intermittent control for IT2 T-S fuzzy interconnected systems under deception attacks. Nonlinear Dyn. (2020). https://doi.org/10.1007/s11071-020-05669-5

  29. Li, X., Zhou, Q., Li, P., Li, H., Lu, R.: Event-triggered consensus control for multi-agent systems against false data-injection attacks. IEEE Trans. Cybern. (2019). https://doi.org/10.1109/tcyb.2019.2937951

  30. Wu, T., Hu, J., Chen, D.: Non-fragile consensus control for nonlinear multi-agent systems with uniform quantizations and deception attacks via output feedback approach. Nonlinear Dyn. 96, 243–255 (2019)

    Article  Google Scholar 

  31. Gao, Y., Sun, G., Liu, J., Shi, Y., Wu, L.: State estimation and self-triggered control of CPSs against joint sensor and actuator attacks. Automatica 113, 108687 (2020)

    Article  MathSciNet  Google Scholar 

  32. Wang, J., Ma, S.: Resilient dynamic output feedback control for discrete-time descriptor switching Markov jump systems and its applications. Nonlinear Dyn. 93, 2233–2247 (2018)

    Article  Google Scholar 

  33. Xie, C., Yang, G.: Observer-based attack-resilient control for linear systems against FDI attacks on communication links from controller to actuators. Int. J. Robust Nonlin. 28(15), 4382–4403 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Lu, A., Yang, G.: Event-triggered secure observer-based control for cyber-physical systems under adversarial attacks. Inf. Sci. 420, 96–109 (2017)

    Article  Google Scholar 

  35. Ma, H., Li, H., Lu, R., Huang, T.: Adaptive event-triggered control for a class of nonlinear systems with periodic disturbances. Sci. China Inf. Sci. 63(5), 161–175 (2020)

    Article  MathSciNet  Google Scholar 

  36. Niu, B., Zhao, P., Liu, J., Ma, H., Liu, Y.: Global adaptive control of switched uncertain nonlinear systems: An improved MDADT method. Automatica 115, 108872 (2020)

    Article  MathSciNet  Google Scholar 

  37. Liu, Z., Yu, J., Zhao, L., Ma, Y., Xue, B., Cheng, S.: Adaptive \(H_{\infty }\) sliding mode control for a class of uncertain Markovian jump systems with time-delay. ICIC Express Lett. 14(4), 319–327 (2020)

    Google Scholar 

  38. Chen, B., Niu, Y., Zou, Y.: Security control for Markov jump system with adversarial attacks and unknown transition rates via adaptive sliding mode technique. J. Franklin I. 356(6), 3333–3352 (2019)

    Article  MathSciNet  Google Scholar 

  39. Huang, X., Zhai, D., Dong, J.: Adaptive integral sliding-mode control strategy of data-driven cyber-physical systems against a class of actuator attacks. IET Control Theory A. 12(10), 1440–1447 (2018)

    Article  MathSciNet  Google Scholar 

  40. Cao, Z., Niu, Y., Song, J.: Finite-time sliding-mode control of Markovian jump cyber-physical systems against randomly occurring injection attacks. IEEE Trans. Autom. Control 65(3), 1264–1271 (2020)

    Article  MathSciNet  Google Scholar 

  41. Jin, X., Haddad, W.M., Yucelen, T.: An adaptive control architecture for mitigating sensor and actuator attacks in cyber-physical systems. IEEE Trans. Autom. Control 62(11), 6058–6064 (2017)

    Article  MathSciNet  Google Scholar 

  42. An, L., Yang, G.: Improved adaptive resilient control against sensor and actuator attacks. Inf. Sci. 423, 145–156 (2018)

    Article  MathSciNet  Google Scholar 

  43. Huang, X., Dong, J.: Reliable control policy of cyber-physical systems against a class of frequency-constrained sensor and actuator attacks. IEEE Trans. Cybern. 48(12), 3432–3439 (2018)

    Article  Google Scholar 

  44. Gu, Z., Park, J.H., Yue, D., Wu, Z., Xie, X.: Event-triggered security output feedback control for networked interconnected systems subject to cyber-attacks. IEEE Trans. Syst. Man Cybern. Syst. (2020). https://doi.org/10.1109/TSMC.2019.2960115

  45. Zhang, L., Guo, G.: Observer-based adaptive event-triggered sliding mode control of saturated nonlinear networked systems with cyber-attacks. Inf. Sci. 543, 180–201 (2021)

    Article  MathSciNet  Google Scholar 

  46. Liu, J., Yin, T., Cao, J., Yue, D., Karimi, H.R.: Security control for ts fuzzy systems with adaptive event-triggered mechanism and multiple cyber-attacks. IEEE Trans. Syst. Man Cybern. Syst. (2020). https://doi.org/10.1109/TSMC.2019.2963143

  47. Liu, J., Yin, T., Yue, D., Karimi, H.R., Cao, J.: Event-based secure leader-following consensus control for multiagent systems with multiple cyber attacks. IEEE Trans. Cybern. (2020). https://doi.org/10.1109/TCYB.2020.2970556

  48. Zhang, G., Yan, C., Ji, X., Zhang, T., Zhang, T., Xu, W.: DolphinAttack: Inaudible voice commands. Assoc. Comput. Mach. 15, 103–117 (2017)

    Google Scholar 

  49. Chen, X., Chen, M., Qi, W., Shen, J.: Dynamic output-feedback control for continuous-time interval positive systems under \(L_1\) performance. Appl. Math. Comput. 289, 48–59 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China 61773225, 61803214, 61703231, 62073188, the Natural Science Foundation of Zhejiang Province under Grant LQ20F030004, the Open Research Project of the State Key Laboratory of Industrial Control Technology, Zhejiang University, China(No.ICT20081), Natural Science Foundation of Ningbo (202003N4075) and Key Technology Project of Jiangbei District (201901A03), the Natural Science Foundation of Ningbo university under Grant XYL20026, K.C. Wong Magna Fund in Ningbo University, Major agricultural application technology innovation project of Shandong Province (SD2019NJ007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hangfeng He.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, H., Qi, W., Liu, Z. et al. Adaptive attack-resilient control for Markov jump system with additive attacks. Nonlinear Dyn 103, 1585–1598 (2021). https://doi.org/10.1007/s11071-020-06085-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06085-5

Keywords

Navigation