Skip to main content
Log in

Pattern control of external electromagnetic stimulation to neuronal networks

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The application of external electromagnetic stimulation to regulate the electrophysiological activities of specific brain regions can provide an ideal control or treatment scheme for some non-organic mental diseases. To further explore the effectiveness of electromagnetic stimulation in the treatment of mental illnesses, the regulatory abilities of external electromagnetic stimulation on the pattern dynamics of Newman–Watts small-world neuronal networks are systematically studied. The main stability function is used to construct four periodic or chaotic synchronous networks. Also, the average discharge frequency and the consistency coefficient are selected to measure the regulatory effects of external electromagnetic stimulation on the network dynamics. Numerical experiments show that electromagnetic stimulation can inhibit the electrophysiological activities of neuronal networks. Periodic electromagnetic stimulation with large amplitude or stochastic electromagnetic stimulation with large deviation has a more significant inhibitory effect on the discharge activities, not only effectively desynchronizing the discharge activities, but also controlling the evolution of spatiotemporal patterns, and even inducing the synchronization transition. Additionally, the number of stimulated neurons in neuronal networks also plays an important role in the evolution of spatiotemporal patterns. This study could provide theoretical guidance for the physiological application of electromagnetic stimulation in the treatment of certain mental diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)

    Google Scholar 

  2. Fitzhugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1(6), 445–466 (1961)

    Google Scholar 

  3. Izhikevich, E.M.: Which model to use for cortical spiking neurons. IEEE T. Neural Netw. 15(5), 1063–1070 (2004)

    Google Scholar 

  4. Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.: Dynamical principles in neuroscience. Rev. Mod. Phys. 78(4), 1213–1265 (2006)

    Google Scholar 

  5. Hashemi, M., Valizadeh, A., Azizi, Y.: Effect of duration of synaptic activity on spike rate of a Hodgkin–Huxley neuron with delayed feedback. Phys. Rev. E 85(2), 021917 (2012)

    Google Scholar 

  6. Yue, Y., Liu, L.W., Liu, Y.J., Chen, Y., Chen, Y.L., Yu, L.C.: Dynamical response, information transition and energy dependence in a neuron model driven by autapse. Nonlinear Dyn. 90(4), 2893–2902 (2017)

    Google Scholar 

  7. Qu, L.H., Du, L., Zhang, H.H., Cao, Z.L., Deng, Z.C.: Regulation of chemical autapse on an FHN-ML neuronal system. Int. J. Bifurc. Chaos 29(14), 1950202 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Thottil, S.K., Ignatius, R.P.: Influence of memristor and noise on H–R neurons. Nonlinear Dyn. 95(1), 239–257 (2019)

    Google Scholar 

  9. Gu, H.G., Pan, B.B.: Identification of neural firing patterns, frequency and temporal coding mechanisms in individual aortic baroreceptors. Front. Comput. Neurosci. 9, 108 (2015)

    Google Scholar 

  10. Wang, Y.H., Wang, R.B., Zhu, Y.T.: Optimal path-finding through mental exploration based on neural energy field gradients. Cogn. Neurodyn. 11(1), 99–111 (2017)

    Google Scholar 

  11. Walsh, V., Cowey, A.: Transcranial magnetic stimulation and cognitive neuroscience. Nat. Rev. Neurosci. 1(1), 73–79 (2000)

    Google Scholar 

  12. Zhang, H.H., Wang, Q.Y., Perc, M., Chen, G.R.: Synaptic plasticity induced transition of spike propagation in neuronal networks. Commun. Nonlinear Sci. Numer. Simul. 18(3), 601–615 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Pashut, T., Wolfus, S., Friedman, A., Lavidor, M., Bargad, I., Yeshurun, Y., Korngreen, A.: Mechanisms of magnetic stimulation of central nervous system neurons. PLoS Comput. Biol. 7(3), e1002022 (2011)

    MathSciNet  Google Scholar 

  14. Ozen, S., Sirota, A., Belluscio, M.A., Anastassiou, C.A., Stark, E., Koch, C., Buzsáki, G.: Transcranial electric stimulation entrains cortical neuronal populations in rats. J. Neurosci. 30(34), 11476–11485 (2010)

    Google Scholar 

  15. Wang, Y., Ma, J., Xu, Y., Wu, F.Q., Zhou, P.: The electrical activity of neurons subject to electromagnetic induction and Gaussian white noise. Int. J. Bifurc. Chaos 27(2), 1750030 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Park, H.J., Bonmassar, G., Kaltenbach, J.A., Machado, A.G., Manzoor, N.F., Gale, J.T.: Activation of the central nervous system induced by micro-magnetic stimulation. Nat. Commun. 4(1), 2463–2463 (2013)

    Google Scholar 

  17. Kaplan, S., Deniz, O.G., Onger, M.E., Turkmen, A.P., Yurt, K.K., Aydin, I., Altunkaynak, B.Z., Davis, D.: Electromagnetic field and brain development. J. Chem. Neuroanat. 75, 52–61 (2016)

    Google Scholar 

  18. Gianni, M., Liberti, M., Apollonio, F., Dinzeo, G.: Modeling electromagnetic fields detectability in a HH-like neuronal system: stochastic resonance and window behavior. Biol. Cybern. 94(2), 118–127 (2006)

    MATH  Google Scholar 

  19. Du, L., Cao, Z.L., Lei, Y.M., Deng, Z.C.: Electrical activities of neural systems exposed to sinusoidal induced electric field with random phase. Sci. China Technol. Sci. 62(7), 1141–1150 (2019)

    Google Scholar 

  20. Feng, W.Y., Wu, Y., Zhang, J.Z.: A route to chaotic behavior of single neuron exposed to external electromagnetic radiation. Front. Comput. Neurosci. 11, 94 (2017)

    Google Scholar 

  21. Qu, L.H., Du, L., Deng, Z.C., Cao, Z.L., Hu, H.W.: Effect of stochastic electromagnetic disturbances on autapse neuronal systems. Chin. Phys. B 27(11), 118707 (2018)

    Google Scholar 

  22. Lv, M., Wang, C.N., Ren, G.D., Ma, J., Song, X.L.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85(3), 1479–1490 (2016)

    Google Scholar 

  23. Su, F., Wang, J., Li, H.Y., Wei, X.L., Yu, H.T., Deng, B.: Synaptic dynamics regulation in response to high frequency stimulation in neuronal networks. Commun. Nonlinear Sci. Numer. Simul. 55, 29–41 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Schwan, H.P.: Electrical properties of tissue and cell suspensions. Adv. Biol. Med. Phys. 5, 147–209 (1957)

    Google Scholar 

  25. Kotnik, T., Bobanović, F., Miklavčič, D.: Sensitivity of transmembrane voltage induced by applied electric fields—a theoretical analysis. Bioelectrochem. Bioenergy 43(2), 285–291 (1997)

  26. Radman, T., Su, Y., An, J.H., Parra, L.C., Bikson, M.: Spike timing amplifies the effect of electric fields on neurons: implications for endogenous field effects. J. Neurosci. 27(11), 3030–3036 (2007)

    Google Scholar 

  27. Radman, T., Ramos, R.L., Brumberg, J.C., Bikson, M.: Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimul. 2(4), 215–228 (2009)

    Google Scholar 

  28. Yu, K., Wang, J., Deng, B., Wei, X.L.: Synchronization of neuron population subject to steady DC electric field induced by magnetic stimulation. Cogn. Neurodyn. 7(3), 237–252 (2013)

    Google Scholar 

  29. Li, J.J., Wu, Y., Du, M.M., Liu, W.M.: Dynamic behavior in firing rhythm transitions of neurons under electromagnetic radiation. Acta Phys. Sin. Chin. Ed. 64(3), 214–220 (2015)

    Google Scholar 

  30. Li, J.J., Liu, S.B., Liu, W.M., Yu, Y.G., Wu, Y.: Suppression of firing activities in neuron and neurons of network induced by electromagnetic radiation. Nonlinear Dyn. 83, 801–810 (2016)

    MathSciNet  Google Scholar 

  31. Lv, M., Ma, J.: Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing 205, 375–381 (2016)

    Google Scholar 

  32. Wu, J., Ma, S.J.: Coherence resonance of the spiking regularity in a neuron under electromagnetic radiation. Nonlinear Dyn. 96, 1895–1908 (2019)

    Google Scholar 

  33. Ma, J., Wu, F.Q., Hayat, T., Zhou, P., Tang, J.: Electromagnetic induction and radiation-induced abnormality of wave propagation in excitable media. Physica A 486, 508–516 (2017)

    MathSciNet  Google Scholar 

  34. Xu, Y., Ying, H.P., Jia, Y., Ma, J., Hayat, T.: Autaptic regulation of electrical activities in neuron under electromagnetic induction. Sci. Rep. 7, 43452 (2017)

    Google Scholar 

  35. Wu, J., Xu, Y., Ma, J.: Lévy noise improves the electrical activity in a neuron under electromagnetic radiation. PLoS ONE 12(3), e0174330 (2017)

    Google Scholar 

  36. Lu, L.L., Jia, Y., Xu, Y., Ge, M.Y., Yang, L.J., Zhan, X.: Energy dependence on modes of electric activities of neuron driven by different external mixed signals under electromagnetic induction. Sci. China Technol. Sci. 62(3), 427–440 (2019)

    Google Scholar 

  37. Mvogo, A., Takembo, C.N., Fouda, H.P.E., Kofane, T.C.: Patterns formation in diffusive excitable systems under magnetic flow effects. Phys. Lett. A 381, 2264–2271 (2017)

    MathSciNet  Google Scholar 

  38. Xu, Y., Jia, Y., Ma, J., Hayat, T., Alsaedi, A.: Collective responses in electrical activities of neurons under field coupling. Sci. Rep. 8(1), 1349 (2018)

    Google Scholar 

  39. Usha, K., Subha, P.A.: Collective dynamics and energy aspects of star-coupled Hindmarsh–Rose neuron model with electrical, chemical and field couplings. Nonlinear Dyn. 96, 2115–2124 (2019)

    MATH  Google Scholar 

  40. Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89, 1569–1578 (2017)

    MathSciNet  Google Scholar 

  41. Sun, Z., Ge, J., Guo, B., Guo, J., Hao, M., Wu, Y.C., Lin, Y.A., La, T., Yao, P.T., Mei, Y.N., Feng, Y., Xue, L.: Extremely low frequency electromagnetic fields facilitate vesicle endocytosis by increasing presynaptic calcium channel expression at a central synapse. Sci. Rep. 6(1), 21774–21774 (2016)

    Google Scholar 

  42. Makowiecki, K., Harvey, A.R., Sherrard, R.M., Rodger, J.: Low-intensity repetitive transcranial magnetic stimulation improves abnormal visual cortical circuit topography and upregulates BDNF in mice. J. Neurosci. 34(32), 10780–10792 (2014)

    Google Scholar 

  43. Wang, J.X., Rogers, L.M., Gross, E.Z., Ryals, A.J., Dokucu, M.E., Brandstatt, K.L., Hermiller, M.S., Voss, J.L.: Targeted enhancement of cortical-hippocampal brain networks and associative memory. Science 345(6200), 1054–1057 (2014)

    Google Scholar 

  44. Ghai, R.S., Bikson, M., Durand, D.M.: Effects of applied electric fields on low-calcium epileptiform activity in the CA1 region of rat hippocampal slices. J. Neurophysiol. 84, 274–280 (2000)

    Google Scholar 

  45. Gluckman, B.J., Nguyen, H., Weinstein, S.L., Schiff, S.J.: Adaptive electric field control of epileptic seizures. J. Neurosci. 21, 590–600 (2001)

    Google Scholar 

  46. Francis, J.T., Gluckman, B.J., Schiff, S.J.: Sensitivity of neurons to weak electric fields. J. Neurosci. 23, 7255–7261 (2003)

    Google Scholar 

  47. Capelli, E., Torrisi, F., Venturini, L., Granato, M., Fassina, L., Lupo, G., Ricevuti, G.: Low-Frequency pulsed electromagnetic field is able to modulate miRNAs in an experimental cell model of Alzheimer’s disease. J. Healthc. Eng. 2017, 2530270 (2017)

    Google Scholar 

  48. Yang, Y.M., Ma, J., Xu, Y., Jia, Y.: Energy dependence on discharge mode of Izhikevich neuron driven by external stimulus under electromagnetic induction. Cogn. Neurodyn. (2020). https://doi.org/10.1007/s11571-020-09596-4

    Article  Google Scholar 

  49. Fisher, R.S., Salanova, V., Witt, T., Worth, R., Henry, T.R., Gross, R.E., et al.: Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 51(5), 899–908 (2010)

    Google Scholar 

  50. Izhikevich, E.M.: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. MIT Press, Cambridge (2007)

    Google Scholar 

  51. Ma, J., Wang, Y., Wang, C.N., Xu, Y., Ren, G.D.: Mode selection in electrical activities of myocardial cell exposed to electromagnetic radiation. Chaos Soliton. Fract. 99, 219–225 (2017)

    Google Scholar 

  52. Wang, Q.Y., Duan, Z.S., Perc, M., Chen, G.R.: Synchronization transitions on small-world neuronal networks: effects of information transmission delay and rewiring probability. Europhys. Lett. 83(5), 50008 (2008)

    Google Scholar 

  53. Yilmaz, E., Baysal, V., Ozer, M., Perc, M.: Autaptic pacemaker mediated propagation of weak rhythmic activity across small-world neuronal networks. Physica A 444, 538–546 (2016)

    MathSciNet  MATH  Google Scholar 

  54. Wang, Q., Gong, Y.B.: Multiple coherence resonance and synchronization transitions induced by autaptic delay in Newman-Watts neuron networks. Appl. Math. Model. 40(15), 7147–7155 (2016)

    MathSciNet  MATH  Google Scholar 

  55. Yu, H.T., Guo, X.M., Wang, J.: Stochastic resonance enhancement of small-world neural networks by hybrid synapses and time delay. Commun. Nonlinear Sci. Numer. Simul. 42, 532–544 (2017)

    MathSciNet  MATH  Google Scholar 

  56. Pecora, L.M., Carroll, T.L.: Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80(10), 2109–2112 (1998)

    Google Scholar 

  57. Dtchetgnia Djeundam, S.R., Yamapi, R., Filatrella, G., Kofane, T.C.: Stability of the synchronized network of Hindmarsh–Rose neuronal models with nearest and global couplings. Commun. Nonlinear Sci. Numer. Simul. 22(1–3), 545–563 (2015)

    MathSciNet  MATH  Google Scholar 

  58. Fan, H.W., Wang, Y.F., Wang, H.T., Lai, Y.C., Wang, X.G.: Autapses promote synchronization in neuronal networks. Sci. Rep. 8(1), 580 (2018)

    Google Scholar 

  59. Huang, L., Chen, Q.F., Lai, Y.C., Pecora, L.M.: Generic behavior of master-stability functions in coupled nonlinear dynamical systems. Phys. Rev. E 80, 036204 (2009)

    Google Scholar 

  60. Sun, X.J., Li, G.F.: Synchronization transitions induced by partial time delay in a excitatory-inhibitory coupled neuronal network. Nonlinear Dyn. 89(4), 2509–2520 (2017)

    MathSciNet  Google Scholar 

  61. Guo, D.Q., Wang, Q.Y., Perc, M.: Complex synchronous behavior in interneuronal networks with delayed inhibitory and fast electrical synapses. Phys. Rev. E 85(1), 878–896 (2012)

    Google Scholar 

  62. Shafiei, M., Jafari, S., Parastesh, F., Ozer, M., Kapitaniak, T., Perc, M.: Time delayed chemical synapses and synchronization in multilayer neuronal networks with ephaptic inter-layer coupling. Commun. Nonlinear Sci. Numer. Simul. 84, 105175 (2020)

    MathSciNet  MATH  Google Scholar 

  63. Yang, X.L., Yu, Y.H., Sun, Z.K.: Autapse-induced multiple stochastic resonances in a modular neuronal network. Chaos 27(8), 083117 (2017)

    MathSciNet  Google Scholar 

  64. Yang, Y.G., Sun, Y.H., Xu, W.: Stochastic bifurcations of a fractional-order vibro-impact system driven by additive and multiplicative Gaussian white noises. Complexity 2019, 6737139 (2019)

    MATH  Google Scholar 

  65. Xie, H.J., Gong, Y.B., Wang, B.Y.: Spike-timing-dependent plasticity optimized coherence resonance and synchronization transitions by autaptic delay in adaptive scale-free neuronal networks. Chaos Soliton. Fract. 108, 1–7 (2018)

    MathSciNet  Google Scholar 

  66. Wang, X.J., Buzsáki, G.: Gamma oscillation by synaptic inhibition in hippocampal interneuronal network model. J. Neurosci. 16(20), 6402–6413 (1996)

    Google Scholar 

  67. Honeycutt, R.L.: Stochastic Runge–Kutta algorithms. I. White noise. Phys. Rev. A 45(2), 600–603 (1992)

    Google Scholar 

  68. Wachtel, H., Seaman, R., Joines, W.: Effects of low-intensity microwaves on isolated neurons. Ann. N. Y. Acad. Sci. 247, 46–62 (1975)

    Google Scholar 

  69. Wu, F.Q., Gu, H.G., Li, Y.Y.: Inhibitory electromagnetic induction current induces enhancement instead of reduction of neural bursting activities. Commun. Nonlinear Sci. Numer. Simul. 79, 104924 (2019)

    MathSciNet  MATH  Google Scholar 

  70. Wu, F.Q., Gu, H.G.: Bifurcations of negative responses to positive feedback current mediated by memristor in a neuron model with bursting patterns. Int. J. Bifurc. Chaos 30(4), 2030009 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11672233 and 11972292), 111 Project (No. BP0719007), the foundation of National Key Laboratory of Science and Technology on Aerodynamic Design and Research (No. 614220119040101) and the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (No. CX201925).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Du.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, L., Du, L., Hu, H. et al. Pattern control of external electromagnetic stimulation to neuronal networks. Nonlinear Dyn 102, 2739–2757 (2020). https://doi.org/10.1007/s11071-020-06076-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06076-6

Keywords

Navigation