Skip to main content
Log in

Nonexistence of invariant manifolds in fractional-order dynamical systems

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Invariant manifolds are important sets arising in the stability theory of dynamical systems. In this article, we take a brief review of invariant sets. We provide some results regarding the existence of invariant lines and parabolas in planar polynomial systems. We provide the conditions for the invariance of linear subspaces in fractional-order systems. Further, we provide an important result showing the nonexistence of invariant manifolds (other than linear subspaces) in fractional-order systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Meiss, J.D.: Differential Dynamical Systems, vol. 14. SIAM, Philadelphia (2007)

    MATH  Google Scholar 

  2. Hale, J.K., Koçak, H.: Dynamics and Bifurcations, vol. 3. Springer, Berlin (2012)

    MATH  Google Scholar 

  3. Hirsch, M.W., Smale, S., Devaney, R.L.: Differential Equations, Dynamical Systems, and an Introduction to Chaos. Academic Press, London (2012)

    MATH  Google Scholar 

  4. Perko, L.: Differential Equations and Dynamical Systems, vol. 7. Springer, Berlin (2013)

    MATH  Google Scholar 

  5. Rondoni, L., Mitra, M., Banerjee, S.: Applications of Chaos and Nonlinear Dynamics in Engineering. Springer, Berlin (2011)

    MATH  Google Scholar 

  6. Walker, J.A.: Dynamical Systems and Evolution Equations: Theory and Applications, vol. 20. Springer, Berlin (2013)

    Google Scholar 

  7. Jackson, T., Radunskaya, A.: Applications of Dynamical Systems in Biology and Medicine, vol. 158. Springer, Berlin (2015)

    MATH  Google Scholar 

  8. Strogatz, S.H.: Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering. CRC Press, London (2018)

    MATH  Google Scholar 

  9. Alligood, K.T., Sauer, T.D., Yorke, J.A.: Chaos. Springer, New York (1996)

    MATH  Google Scholar 

  10. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (2003)

    MATH  Google Scholar 

  11. Pietronero, L., Tosatti, E.: Fractals in Physics. Elsevier, Amsterdam (2012)

    MATH  Google Scholar 

  12. Peitgen, H.O., Richter, P.H.: The Beauty of Fractals: Images of Complex Dynamical Systems. Springer, Berlin (2013)

    MATH  Google Scholar 

  13. Barnsley, M.F.: Fractals Everywhere. Academic Press, London (2014)

    MATH  Google Scholar 

  14. Devaney, R.: An Introduction to Chaotic Dynamical Systems. CRC Press, London (2018)

    Google Scholar 

  15. Pachepsky, Y., Crawford, J.W., Rawls, W.J.: Fractals in Soil Science, vol. 27. Elsevier, Amsterdam (2000)

    Google Scholar 

  16. Crilly, A.J., Earnshaw, R., Jones, H.: Applications of Fractals and Chaos: The Shape of Things. Springer, Berlin (2013)

    MATH  Google Scholar 

  17. Kuang, Y.: Delay Differential Equations: With Applications in Population Dynamics, vol. 191. Academic Press, London (1993)

    MATH  Google Scholar 

  18. Gori, F., Geronazzo, L., Galeotti, M.: Nonlinear Dynamics in Economics and Social Sciences. In: Proceedings of the Second Informal Workshop, Held at the Certosa Di Pontignano, Siena, Italy, May 27–30, 1991, Springer, Berlin, vol. 399 (2012)

  19. Hadamard, J.: Sur l’itération et les solutions asymptotiques des équations différentielles. Bull. Soc. Math. France 29, 224–228 (1901)

    MATH  Google Scholar 

  20. Liapounoff, A.: Probléme gènèral de la stabilitè du mouvement. Ann. Fac. Sci. Toulouse Math. 9, 203–475 (1907)

    MathSciNet  MATH  Google Scholar 

  21. Perron, O.: Über Stabiltät and asymptotisches verhalten der Integrals von Differentialgleichungssystenl. Math. Z. 29, 129–160 (1928)

    Google Scholar 

  22. Kelley, A.: The stable, center-stable, center, center-unstable, unstable manifolds. J. Differ. Equ. 3(4), 546–570 (1967)

    MathSciNet  MATH  Google Scholar 

  23. Gorban, A.N., Karlin, I.V.: Method of invariant manifold for chemical kinetics. Chem. Eng. Sci. 58(21), 4751–4768 (2003)

    Google Scholar 

  24. Beigie, D., Leonard, A., Wiggins, S.: Invariant manifold templates for chaotic advection. Chaos Solitons Fract. 4(6), 749–868 (1994)

    MATH  Google Scholar 

  25. Yu, X., Chen, G., Xia, Y., Song, Y., Cao, Z.: An invariant-manifold-based method for chaos control. IEEE Trans. Circuits Syst. I Fundam. Theory and Applications 48(8), 930–937 (2001)

    MathSciNet  MATH  Google Scholar 

  26. Karagiannis, D., Carnevale, D., Astolfi, A.: Invariant manifold based reduced-order observer design for nonlinear systems. IEEE Trans. Autom. Control 53(11), 2602–2614 (2008)

    MathSciNet  MATH  Google Scholar 

  27. Villa, C.V.S., Sinou, J.J., Thouverez, F.: The invariant manifold approach applied to nonlinear dynamics of a rotor-bearing system. Eur. J. Mech.-A/Solids 24(4), 676–689 (2005)

    MATH  Google Scholar 

  28. Roussel, M.R., Fraser, S.J.: Invariant manifold methods for metabolic model reduction. Chaos Interdiscipl. J. Nonlinear Sci. 11(1), 196–206 (2001)

    MATH  Google Scholar 

  29. Love, E.R.: Fractional derivatives of imaginary order. J. Lond. Math. Soc. 2, 241–259 (1971)

    MathSciNet  MATH  Google Scholar 

  30. Oldham, K., Spanier, J.: The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order, vol. 111. Elsevier, Amsterdam (1974)

    MATH  Google Scholar 

  31. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integral and Derivatives: Theory and Applications, vol. 1. Gordon and Breach Science, Yverdon (1993)

    MATH  Google Scholar 

  32. Samko, S.G.: Fractional integration and differentiation of variable order. Anal. Math. 21(3), 213–236 (1995)

    MathSciNet  MATH  Google Scholar 

  33. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  34. Bagley, R.L., Torvik, P.J.: On the existence of the order domain and the solution of distributed order equations—part I. Int. J. Appl. Math. 2(7), 865–882 (2000)

    MathSciNet  MATH  Google Scholar 

  35. Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, New York (2010)

    MATH  Google Scholar 

  36. Das, S.: Functional Fractional Calculus. Springer, Berlin (2011)

    MATH  Google Scholar 

  37. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    MATH  Google Scholar 

  38. Magin, R.L.: Fractional Calculus in Bioengineering. Begell House, Redding (2006)

    Google Scholar 

  39. Sabatier, J., Agrawal, O.P., Machado, J.T.: Advances in Fractional Calculus. Springer, Dordrecht (2007)

    MATH  Google Scholar 

  40. Baleanu, D., Güvenç, Z.B., Machado, J.T.: New Trends in Nanotechnology and Fractional Calculus Applications. Springer, New York (2010)

    MATH  Google Scholar 

  41. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. World Scientific, Singapore (2010)

    MATH  Google Scholar 

  42. Caponetto, R., Dongola, G., Fortuna, L., Petráš, I.: Fractional Order Systems: Modeling and Control Applications. World Scientific, Singapore (2010)

    Google Scholar 

  43. Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., Feliu-Batlle, V.: Fractional-Order Systems and Controls: Fundamentals and Applications. Springer, Berlin (2010)

    MATH  Google Scholar 

  44. Delbosco, D., Rodino, L.: Existence and uniqueness for a nonlinear fractional differential equation. J. Math. Anal. Appl. 204(2), 609–625 (1996)

    MathSciNet  MATH  Google Scholar 

  45. Daftardar-Gejji, V., Jafari, H.: Analysis of a system of nonautonomous fractional differential equations involving Caputo derivatives. J. Math. Anal. Appl. 328(2), 1026–1033 (2007)

    MathSciNet  MATH  Google Scholar 

  46. Wei, Z., Li, Q., Che, J.: Initial value problems for fractional differential equations involving Riemann–Liouville sequential fractional derivative. J. Math. Anal. Appl. 367(1), 260–272 (2010)

    MathSciNet  MATH  Google Scholar 

  47. Matignon, D.: Stability results for fractional differential equations with applications to control processing. Computational Engineering in Systems and Application multi-conference. In: IMACS, IEEE-SMC Proceedings, Lille, France, vol. 2, pp. 963–968 (1996)

  48. Deng, W., Li, C., Lü, J.: Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn. 48(4), 409–416 (2007)

    MathSciNet  MATH  Google Scholar 

  49. Tavazoei, M.S., Haeri, M.: Chaotic attractors in incommensurate fractional order systems. Phys. D 237(20), 2628–2637 (2008)

    MathSciNet  MATH  Google Scholar 

  50. Bhalekar, S.: Stability and bifurcation analysis of a generalized scalar delay differential equation. Chaos Interdiscipl. J. Nonlinear Sci. 26(8), 084306 (2016)

    MathSciNet  MATH  Google Scholar 

  51. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29(1–4), 3–22 (2002)

    MathSciNet  MATH  Google Scholar 

  52. Daftardar-Gejji, V., Sukale, Y., Bhalekar, S.: A new predictor–corrector method for fractional differential equations. Appl. Math. Comput. 244, 158–182 (2014)

    MathSciNet  MATH  Google Scholar 

  53. Jhinga, A., Daftardar-Gejji, V.: A new finite-difference predictor–corrector method for fractional differential equations. Appl. Math. Comput. 336, 418–432 (2018)

    MathSciNet  MATH  Google Scholar 

  54. Kumar, M., Daftardar-Gejji, V.: A new family of predictor–corrector methods for solving fractional differential equations. Appl. Math. Comput. 363, 124633 (2019)

    MathSciNet  MATH  Google Scholar 

  55. Cong, N.D., Doan, T.S., Siegmund, S., Tuan, H.T.: On stable manifolds for planar fractional differential equations. Appl. Math. Comput. 226, 157–168 (2014)

    MathSciNet  MATH  Google Scholar 

  56. Sayevand, K., Pichaghchi, K.: Successive approximation: a survey on stable manifold of fractional differential systems. Fract. Calcul. Appl. Anal. 18(3), 621–641 (2015)

    MathSciNet  MATH  Google Scholar 

  57. Deshpande, A., Daftardar-Gejji, V.: Local stable manifold theorem for fractional systems. Nonlinear Dyn. 83(4), 2435–2452 (2016)

    MathSciNet  MATH  Google Scholar 

  58. Deshpande, A., Daftardar-Gejji, V.: Local stable manifold theorem for fractional systems revisited. arXiv preprint arXiv:1701.00076 (2016)

  59. Cong, N.D., Doan, T.S., Siegmund, S., Tuan, H.T.: On stable manifolds for fractional differential equations in high-dimensional spaces. Nonlinear Dyn. 86(3), 1885–1894 (2016)

    MathSciNet  MATH  Google Scholar 

  60. Ma, L., Li, C.: Center manifold of fractional dynamical system. J. Comput. Nonlinear Dyn. 11(2), 021010 (2016)

    Google Scholar 

  61. Wang, J., Fĕckan, M., Zhou, Y.: Center stable manifold for planar fractional damped equations. Appl. Math. Comput. 296, 257–269 (2017)

    MathSciNet  MATH  Google Scholar 

  62. Bhalekar, S., Patil, M.: Singular points in the solution trajectories of fractional order dynamical systems. Chaos An Interdiscipl. J. Nonlinear Sci. 28(11), 113123 (2018)

    MathSciNet  MATH  Google Scholar 

  63. Deshpande, A.S., Daftardar-Gejji, V., Vellaisamy, P.: Analysis of intersections of trajectories of systems of linear fractional differential equations. Chaos An Interdiscipl. J. Nonlinear Sci. 29(1), 013113 (2019)

    MathSciNet  MATH  Google Scholar 

  64. Kaslik, E., Sivasundaram, S.: Nonlinear dynamics and chaos in fractional-order neural networks. Neural Netw. 32, 245–256 (2012)

    MATH  Google Scholar 

  65. Bhalekar, S., Patil, M.: Can we split fractional derivative while analyzing fractional differential equations? Commun. Nonlinear Sci. Numer. Simul. 76, 12–24 (2019)

    MathSciNet  MATH  Google Scholar 

  66. Patil, M., Bhalekar, S.: Analysis of solution trajectories of fractional order systems. Pramana, 94(1), 1–14 (2020)

  67. Luchko, Y., Gorenflo, R.: An operational method for solving fractional differential equations with the Caputo derivatives. Acta Math. Vietnam 24, 207–233 (1999)

    MathSciNet  MATH  Google Scholar 

  68. Hilbert, D.: Mathematical problems. Bull. Amer. Math. Soc. 8, 437–479 (1902)

    MathSciNet  MATH  Google Scholar 

  69. Coppel, W.A.: A survey of quadratic systems. J. Differ. Equ. 2(3), 293–304 (1966)

    MathSciNet  MATH  Google Scholar 

  70. Chicone, C., Shafer, D.S.: Separatrix and limit cycles of quadratic systems and Dulac’s theorem. Trans. Am. Math. Soc. 278(2), 585–612 (1983)

    MathSciNet  MATH  Google Scholar 

  71. Ye, Y.: Qualitative Theory of Polynomial Differential Systems. Shanghai Scientific and Technical Publishers, Shanghai (1995)

    MATH  Google Scholar 

  72. Sokulski, J.: On the number of invariant lines for polynomial vector fields. Nonlinearity 9(2), 479 (1996)

    MathSciNet  MATH  Google Scholar 

  73. Artés, J.C., Grünbaum, B., Llibre, J.: On the number of invariant straight lines for polynomial differential systems. Pac. J. Math. 184(2), 207–230 (1998)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

S. Bhalekar acknowledges the Science and Engineering Research Board (SERB), New Delhi, India, for the Research Grant (Ref. MTR/2017/000068) under Mathematical Research Impact Centric Support (MATRICS) Scheme. M. Patil acknowledges Department of Science and Technology (DST), New Delhi, India, for INSPIRE Fellowship (Code-IF170439). The authors are grateful to the editors and the anonymous reviewers for their insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Bhalekar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Literature review

Consider a planar polynomial vector field (13).

The second part of Hilbert’s sixteenth problem [68] is related to the number of limit cycles in the polynomial system (13). The literature review of the planar quadratic system is taken by Coppel [69]. In [70], authors studied the classification of phase portraits of a quadratic system in a region surrounded by separatrix cycle.

In [71], Ye proposed the following conjecture:

Conjecture 1

When n is odd, the system (13) has at most \(M_n=2n+2\) invariant lines; when n is even, the system (13) has at most \(M_n=2n+1\) invariant straight lines.

For \(n=2, 3\) and 4, this conjecture is proved by Sokulski [72]. However, the conjecture is false [73] if \(n>4\). It should be noted that the system (13) can have infinitely many invariant straight lines (see Example (iv)).

Artes [73] proposed the following important result:

Theorem 6.1

Assume that the polynomial differential system (13) of degree n has finitely many invariant straight lines. Then, the following statements hold for the system (13).

  1. 1.

    Either all the points on an invariant line are equilibrium or the line contains no more than n equilibrium points.

  2. 2.

    No more than n invariant straight lines can be parallel.

  3. 3.

    The set of all invariant straight lines through a single point cannot have more than \(n+1\) different slopes.

  4. 4.

    Either it has infinitely many finite equilibrium points, or it has at most \(n^2\) finite equilibrium points.

Theorem 6.2

There exists invariant parabola \({\varvec{x}} ={\varvec{my}}^\mathbf{2 }\) for the system (21) if and only if

  1. 1.

    \(a_2=0,\,a_3=2b_5,\,b_3=0\)   and

  2. 2.

    One of the conditions \((a),\, (b)\),  (c) and (d) hold.

    1. (a)

      \(a_4=0\)\(a_1=2b_2\)\(a_5\ne 2b_4\)  and  \(b_1\ne 0\).  (In this case \(m=\frac{a_5-2b_4}{2b_1}\).)

    2. (b)

      \(a_5=2b_4\)\(b_1=0\)\(a_4\ne 0\)  and  \(a_1\ne 2b_2\).  (In this case \(m=\frac{-a_4}{a_1-2b_2}\).)

    3. (c)

      \(a_4\ne 0\)\(a_1\ne 2b_2\)\(a_5\ne 2b_4\)\(b_1\ne 0\)  and 

      \(a_1a_5-2a_1b_4-2b_2a_5+4b_2b_4+2a_4b_1=0\).  (In this case \(m=\frac{a_5-2b_4}{2b_1}=\frac{-a_4}{a_1-2b_2}\).)

    4. (d)

      \(a_4=0\)\(a_1=2b_2\)\(a_5=2b_4\)  and \(b_1=0\). (In this case, \(x=my^2\)\(\forall \, m\in {\mathbb {R}}\).)

Example 6.1

Consider

$$\begin{aligned} \begin{aligned} {\dot{x}}&=2x-2x^2+y^2+6xy\\ {\dot{y}}&=-y+3y^2-xy. \end{aligned} \end{aligned}$$
(56)

This system satisfies the conditions 1 and 2(b) of Theorem 6.2, and the invariant parabola is \(x=-\frac{1}{4}y^2\).

The corresponding vector field is sketched in Fig. 7a.

In the following example, we can see that the general parabola is invariant under the flow.

Example 6.2

Consider the following system

$$\begin{aligned} \begin{aligned} {\dot{x}}&=\frac{1}{2}x-\frac{5}{2}y+2\sqrt{2}x^2+2\sqrt{2}y^2\\ {\dot{y}}&=-\frac{5}{2}x+\frac{1}{2}y+\frac{3}{\sqrt{2}}x^2+\frac{7}{\sqrt{2}}y^2-\sqrt{2}xy. \end{aligned} \end{aligned}$$
(57)

Here,  \(5x^2-10xy+5y^2-8\sqrt{2}x-8\sqrt{2}y=0\) is invariant under the flow of this system (see Fig. 7b).

Fig. 7
figure 7

Invariant parabolas \(x=my^2\)

1.2 Some other invariant curves

The Hamiltonian H(xy) of a Hamiltonian system, passing through a saddle equilibrium point, works as separatrix [4].

Example 6.3

Consider a planar quadratic system

$$\begin{aligned} \begin{aligned} {\dot{x}}&=y-\sqrt{2}xy\\ {\dot{y}}&=\frac{1}{2}(2x+\sqrt{2}x^2+\sqrt{2}y^2) . \end{aligned} \end{aligned}$$
(58)

This system is a Hamiltonian system, and the Hamiltonian is given by

$$\begin{aligned} H(x,\,y)=-\frac{1}{2}x^2+\frac{1}{2}y^2-\frac{1}{3\sqrt{2}}x^3-\frac{1}{\sqrt{2}}xy^2. \end{aligned}$$

Here,  \(-\frac{1}{2}x^2+\frac{1}{2}y^2-\frac{1}{3\sqrt{2}}x^3-\frac{1}{\sqrt{2}}xy^2=0\)  gives separatrix for this system and it is shown in Fig. 8.

Fig. 8
figure 8

Vector field of system (58)

Theorem 6.3

The cubic curve \(y=x^3+mx^2+ux\)  is invariant under planar quadratic system (21) if and only if

$$\begin{aligned} a_4=a_2=b_4=a_5=0,\,\, b_5=3a_3, \end{aligned}$$
$$\begin{aligned}&6a_1^3+2a_3^2b_1-11a_1^2b_2-b_2^3-a_3b_2b_3\\&\quad +\,a_1(6b_2^2+a_3b_3)=0, \end{aligned}$$

\(a_3\ne 0\) and \(a_1\ne b_2\).

In this case,

$$\begin{aligned} m=\frac{3a_1-b_2}{a_3}\quad \mathrm {and}\quad u=\frac{b_1}{a_1-b_2}. \end{aligned}$$

Example 6.4

The planar quadratic system

$$\begin{aligned} \begin{aligned} {\dot{x}}&=x+x^2\\ {\dot{y}}&=x+2y+2x^2+3xy, \end{aligned} \end{aligned}$$
(59)

has invariant curve, viz. \(y=x^3+x^2-x\) (see Fig. 9).

Fig. 9
figure 9

Vector field of system (59)

Theorem 6.4

The curves \(y=mx^k\), (for any \(m\in {\mathbb {R}}\) and \(k>0\)) are invariant under the flow of planar quadratic system (21) if and only if

$$\begin{aligned} b_1=b_3=a_4=a_2=0,\,\, b_4=ka_5, \end{aligned}$$
$$\begin{aligned} b_5=ka_3\quad \mathrm {and}\quad b_2=ka_1. \end{aligned}$$

The system (21) can have invariant curves other than polynomial curves also. The following theorem provides conditions for the existence of an exponential curve as an invariant.

Theorem 6.5

The system (21) has exponential curve \(y=m e^x\) for all \(m\in {\mathbb {R}}\), as an invariant curve if

$$\begin{aligned} a_3= & {} a_4=a_5=b_1=b_2=b_3=0, \\b_4= & {} a_2\quad \mathrm {and}\quad b_5=a_1. \end{aligned}$$

Example 6.5

Consider the planar quadratic system

$$\begin{aligned} \begin{aligned} {\dot{x}}&=-2x+3y\\ {\dot{y}}&=3y^2-2xy. \end{aligned} \end{aligned}$$
(60)

It can be verified that the curve \(y=m e^x\) (for all \(m\in {\mathbb {R}}\)) is invariant under the flow of system (60).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhalekar, S., Patil, M. Nonexistence of invariant manifolds in fractional-order dynamical systems. Nonlinear Dyn 102, 2417–2431 (2020). https://doi.org/10.1007/s11071-020-06073-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06073-9

Keywords

Navigation