Skip to main content
Log in

Traveling wave induced periodic synchronous patterns in coupled discontinuous systems and its potential application

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Periodic synchronous patterns induced by the traveling waves in coupled discontinuous map lattices are investigated by numerical simulation. The formation mechanism of this behavior is analyzed in detail. The results show that the periodic synchronous patterns arise from the competition between different homogeneous states and are a function of their relative sizes. Periodic synchronous patterns can be controlled by varying the system parameters, and changing even a single node may influence the system. As an potential application of periodic synchronous patterns in secure communications, a preliminary scheme is proposed and verified by example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fujisaka, H., Yamada, T.: Stability theory of synchronized motion in coupled-oscillator systems. Prog. Theor. Phys. 69(1), 32 (1983)

    MathSciNet  MATH  Google Scholar 

  2. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821 (1990)

    MathSciNet  MATH  Google Scholar 

  3. Murali, K., Lakshmanan, M.: Drive-response scenario of chaos synchronization in identical nonlinear systems. Phys. Rev. E 49, 4882 (1994)

    Google Scholar 

  4. Chen, M., Han, Z.: Controlling and synchronizing chaotic Genesio system via nonlinear feedback control. Chaos, Solitons Fractals 17(4), 709–716 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Cuomo, K., Oppenheim, A., Strogatz, S.H.: Synchronization of Lorenz-based chaotic circuits with applications to communications. IEEE Trans. Circ. Syst. II Anal. Digit. Signal Process. 40(10), 626–633 (1993)

    Google Scholar 

  6. Liao, T.L.: Adaptive synchronization of two Lorenz systems. Chaos Solitons Fractals 9(9), 1555 (1998)

    MATH  Google Scholar 

  7. Meng, J., Wang, X.: Generalized synchronization via nonlinear control. Chaos Interdiscip. J. Nonlinear Sci. 18(2), 023108 (2008)

    MATH  Google Scholar 

  8. Lv, M., Ma, J., Yao, Y.G., Alzahrani, F.: Synchronization and wave propagation in neuronal network under field coupling. Sci. China Technol. Sci. 62(3), 448–457 (2019)

    Google Scholar 

  9. Parastesh, F., Azarnoush, H., Jafari, S., Hatef, B., Perc, M., Repnik, R.: Synchronizability of two neurons with switching in the coupling. Appl. Math. Comput. 350, 217–223 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Azizi, T., Kerr, G.: Chaos synchronization in discrete-time dynamical systems with application in population dynamics. J. Appl. Math. Phys. 8(3), 406–423 (2020)

    Google Scholar 

  11. Yang, N., Miranowicz, A., Liu, Y.C., Xia, K., Nori, F.: Chaotic synchronization of two optical cavity modes in optomechanical systems. Sci. Rep. 9(1), 1–15 (2019)

    Google Scholar 

  12. Wu, F.Q., Ma, J., Ren, G.D.: Synchronization stability between initial-dependent oscillators with periodical and chaotic oscillation. J. Zhejiang Univ. Sci. A 19(12), 889–903 (2018)

    Google Scholar 

  13. Boccaletti, S., Kurths, J., Osipov, G., Valladaresbe, D.L., Zhou, C.S.: The synchronization of chaotic systems. Phys. Rep. 366(1–2), 1–101 (2002)

    MathSciNet  MATH  Google Scholar 

  14. Zhan, M., Wang, X., Gong, X., Wei, G.W., Lai, C.H.: Complete synchronization and generalized synchronization of one-way coupled time-delay systems. Phys. Rev. E 68(3), 036208 (2003)

    Google Scholar 

  15. Ma, J., Mi, L., Zhou, P., Xu, Y., Hayat, T.: Phase synchronization between two neurons induced by coupling of electromagnetic field. Appl. Math. Comput. 307, 321–328 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Rosenblum, M.G., Pikovsky, A.S., Kurths, J.: From phase to lag synchronization in coupled chaotic oscillators. Phys. Rev. Lett. 78(22), 4193 (1997)

    MATH  Google Scholar 

  17. Wang, X., She, K., Zhong, S., Yang, H.: Lag synchronization analysis of general complex networks with multiple time-varying delays via pinning control strategy. Neural Comput. Appl. 31(1), 43–53 (2019)

    Google Scholar 

  18. Li, K., Yu, W., Ding, Y.: Successive lag synchronization on nonlinear dynamical networks via linear feedback control. Nonlinear Dyn. 80(1–2), 421–430 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Lu, W., Liu, B., Chen, T.: Cluster synchronization in networks of coupled nonidentical dynamical systems. Chaos 20(1), 013120 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Belykh, V.N., Belykh, I.V., Mosekilde, E.: Cluster synchronization modes in an ensemble of coupled chaotic oscillators. Phys. Rev. E 63, 036216 (2001)

    Google Scholar 

  21. Ashwin, P., Buescu, J., Stewart, I.: Bubbling of attractors and synchronization of chaotic oscillators. Phys. Lett. A 193, 126–139 (1994)

    MathSciNet  MATH  Google Scholar 

  22. Rulkov, N.F., Sushchik, M.M., Tsimring, L.S., Abarbanel, H.D.: Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E 51(2), 980 (1995)

    Google Scholar 

  23. Kaneko, K.: Global traveling wave triggered by local phase slips. Phys. Rev. Lett. 69, 905–908 (1992)

    Google Scholar 

  24. Kaneko, K.: Chaotic traveling waves in a coupled map lattice. Physica D 68(3–4), 299–317 (1993)

    MathSciNet  MATH  Google Scholar 

  25. Zhang, G., Jiang, D., Cheng, S.: 3-periodic traveling wave solutions for a dynamical coupled map lattice. Nonlinear Dyn. 50, 235–247 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Franceschini, V., Giberti, C., Vernia, C.: On quasiperiodic travelling waves in coupled map lattices. Physica D 164(1–2), 28–44 (2002)

    MathSciNet  MATH  Google Scholar 

  27. Schutze, J., Mair, T., Hauser, M.J.B., Falcke, M., Wolf, J.: Metabolic synchronization by traveling waves in yeast cell layers. Biophys. J. 100(4), 809–813 (2011)

    Google Scholar 

  28. Shimizu, K., Endo, T., Ueyama, D.: Pulse Wave Propagation and Interaction Phenomenon in a Large Number of Coupled van der Pol Oscillator Lattice. in: International Symposium on Nonlinear Theory and its Applications ,NOLTA ’0, Vancouver, Canada, 16–19(2007)

  29. Janaki, T.M., Sinha, S., Gupte, N.: Evidence for directed percolation universality at the onset of spatiotemporal intermittency in coupled circle maps. Phys. Rev. E 67, 056218 (2003)

    Google Scholar 

  30. Gade, P.M., Hu, C.K.: Synchronous chaos in coupled map lattices with small-world interactions. Phys. Rev. E 62, 6409–6413 (2000)

    Google Scholar 

  31. Glass, L., Belair, J.: Continuation of arnold tongues in mathematical models of periodically forced biological oscillators. Lect. Notes Biomath. 66, 232–243 (1986)

    MathSciNet  Google Scholar 

  32. Zhao, Y.B., Luo, X.S., Wang, B.H., Fang, J.Q.: Study on stability of the voltage-mode DC–DC converters. Acta Phys. Sin. 54(11), 5022–5026 (2005)

    Google Scholar 

  33. He, D.R., Wang, B.H., Bauer, M., Habip, S., Krueger, U., Martienssen, W., Christiansen, B.: Interaction between discontinuity and non-invertibility in a relaxation oscillator. Physica D 79(2–4), 335–347 (1994)

    MATH  Google Scholar 

  34. Dai, J., Chu, X.S., He, D.R.: Dynamical properties of discontinuous and noninvertible two-dimensional map. Acta Phys. Sin. 5(8), 3979–3984 (2006)

    Google Scholar 

  35. He, D.R., Bauer, M., Habip, S., Krueger, U., Martienssen, W., Christiansen, B., Wang, B.H.: Type V intermittency. Phys. Lett. A 171(1), 61–65 (1992)

    Google Scholar 

  36. Qu, S.X., Christiansen, B., He, D.R.: Hole-induced crisis in a piece-wise linear map. Phys. Lett. A 201(5–6), 413–418 (1995)

    MathSciNet  MATH  Google Scholar 

  37. Qu, S.X., Wu, S., He, D.R.: Multiple devil’s staircase and type-V intermittency. Phys. Rev. E 57, 402–411 (1998)

    MathSciNet  Google Scholar 

  38. He, D.R., Ding, E.J., Bauer, M., Habip, S., Krueger, U., Martienssen, W., Christiansen, B.: Coexistence of attractors induced by interaction between discontinuity and non-invertibility. Europhys. Lett. 26(3), 165 (1994)

    MATH  Google Scholar 

  39. Wang, C.J., Yang, K.L., Qu, S.X.: Noise destroys the coexistence of periodic orbits of a piecewise linear map. Chin. Phys. B 22(3), 030502 (2013)

    Google Scholar 

  40. Qu, S.X., Lu, Y.Z., Zhang, L., He, D.R.: Discontinuous bifurcation and coexistence of attractors in a piecewise linear map with a gap. Chin. Phys. B 17(12), 4418 (2008)

    Google Scholar 

  41. Pereira, R.F., Viana, R.L., Lopes, S.R., Vergès, M.C., Pinto, SEdS: Parametric evolution of unstable dimension variability in coupled piecewise-linear chaotic maps. Phys. Rev. E 83(3), 037201 (2011)

    Google Scholar 

  42. Akaishi, A., Shudo, A.: Accumulation of unstable periodic orbits and the stickiness in the two-dimensional piecewise linear map. Phys. Rev. E 80(6), 066211 (2009)

    Google Scholar 

  43. Miyaguchi, T., Aizawa, Y.: Spectral analysis and an area-preserving extension of a piecewise linear intermittent map. Phys. Rev. E 75(6), 066201 (2007)

    MathSciNet  Google Scholar 

  44. dos Santos, A., Viana, R., Lopes, S., Pinto, SdS, Batista, A.: Chaos synchronization in a lattice of piecewise linear maps with regular and random couplings. Physica A 367, 145–147 (2006)

    Google Scholar 

  45. Zou, H., Guan, S., Lai, C.H.: Dynamical formation of stable irregular transients in discontinuous map systems. Phys. Rev. E 80(4), 046214 (2009)

    Google Scholar 

  46. Morgül, Ö., Feki, M.: A chaotic masking scheme by using synchronized chaotic systems. Phys. Lett. A 251(3), 169–176 (1999)

    Google Scholar 

  47. Zhou, C.S., Chen, T.L.: Robust communication via chaotic synchronization based on contraction maps. Phys. Lett. A 225(1–3), 60–66 (1997)

    MathSciNet  MATH  Google Scholar 

  48. Kolumbán, G., Kennedy, M.P., Chua, L.O.: The role of synchronization in digital communications using chaos. I. Fundamentals of digital communications. IEEE Trans. Circ. Syst. I Fund. Theory Appl. 44(10), 927–936 (1997)

    MathSciNet  Google Scholar 

  49. Cuomo, K.M., Oppenheim, A.V.: Circuit implementation of synchronized chaos with applications to communications. Phys. Rev. Lett. 71(1), 65–68 (1993)

    Google Scholar 

  50. Chen, J.Y., Wong, K.W., Cheng, L.M., Shuai, J.W.: A secure communication scheme based on the phase synchronization of chaotic systems. Chaos 13(2), 508–514 (2003)

    Google Scholar 

  51. Kocarev, L., Parlitz, U.: General approach for chaotic synchronization with applications to communication. Phys. Rev. Lett. 74(25), 5028–5031 (1995)

    Google Scholar 

  52. Peng, J.H., Ding, E.J., Ding, M., Yang, W.: Synchronizing hyperchaos with a scalar transmitted signal. Phys. Rev. Lett. 76(6), 904–907 (1995)

    Google Scholar 

  53. Murali, K., Lakshmanan, M.: Secure communication using a compound signal from generalized synchronizable chaotic systems. Phys. Lett. A 241(6), 303–310 (1998)

    MATH  Google Scholar 

  54. Sundar, S., Minai, A.A.: Synchronization of randomly multiplexed chaotic systems with application to communication. Phys. Rev. Lett. 85(25), 5456–5459 (2000)

    Google Scholar 

  55. Kim, C.M., Rim, S., Kye, W.H.: Sequential synchronization of chaotic systems with an application to communication. Phys. Rev. Lett. 88(1), 014103 (2001)

    Google Scholar 

  56. Liu, H., Wang, X., Zhu, Q.: Asynchronous anti-noise hyper chaotic secure communication system based on dynamic delay and state variables switching. Phys. Lett. A 375(30–31), 2828–2835 (2011)

    MATH  Google Scholar 

  57. Carroll, T., Pecora, L.M.: Synchronizing chaotic circuits. IEEE Trans. Circ. Syst. 38(4), 453 (1991)

    MATH  Google Scholar 

  58. VanWiggeren, G.D., Roy, R.: Communication with chaotic lasers. Science 279(5354), 1198 (1998)

    Google Scholar 

  59. Garcia-Ojalvo, J., Roy, R.: Spatiotemporal communication with synchronized optical chaos. Phys. Rev. Lett. 86(22), 5204 (2001)

    Google Scholar 

  60. Kapral, R., Livi, R., Oppo, G.-L., Politi, A.: Dynamics of complex interfaces. Phys. Rev. E 49(3), 2009 (1994)

    MathSciNet  Google Scholar 

  61. Kuramoto, Y., Nishikawa, I.: Statistical macrodynamics of large dynamical systems. Case of a phase transition in oscillator communities. J. Stat. Phys. 49, 569 (1987)

    MathSciNet  MATH  Google Scholar 

  62. Li, C.L., Li, Z.Y., Feng, W., Tong, Y.N., Wei, D.Q.: Dynamical behavior and image encryption application of a memristor-based circuit system. Int. J. Electron. 100, 152861 (2019)

    Google Scholar 

  63. Yi, M., Wang, C.J., Yang, K.L.: Discontinuity-induced intermittent synchronization transitions in coupled non-smooth systems. Chaos 30(3), 033113 (2020)

    MathSciNet  MATH  Google Scholar 

  64. Zhou, P., Ma, J., Tang, J.: Clarify the physical process for fractional dynamical systems. Nonlinear Dyn. 100, 2353 (2020)

    Google Scholar 

  65. Zhang, F.C., Liao, X.F., Zhang, G.Y.: Some new results for the generalized Lorenz system. Qual. Theor. Dyn. Syst. 16(3), 749 (2017)

    MathSciNet  MATH  Google Scholar 

  66. Zhang, F.C., Liao, X.F., Zhang, G.Y., Mu, C.L., Zhou, P., Xiao, M.: Dynamical behaviors of a generalized Lorenz family. Discrete Cont. Dyn. B. 22(10), 3707 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11205006, 11647006), the Natural Science New Star of Science and Technologies Research Plan in Shaanxi Province of China (Grant No. 2014KJXX-77), and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2018JM1034). We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Can-Jun Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, KL., Zhuo, XJ., Wang, CJ. et al. Traveling wave induced periodic synchronous patterns in coupled discontinuous systems and its potential application. Nonlinear Dyn 102, 2783–2792 (2020). https://doi.org/10.1007/s11071-020-06065-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06065-9

Keywords

Navigation