Skip to main content
Log in

Nonlinear stochastic dynamics of a rub-impact rotor system with probabilistic uncertainties

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a stochastic model for performing the uncertainty and sensitivity analysis of a Jeffcott rotor system with fixed-point rub-impact and multiple uncertain parameters. A probabilistic nonlinear formulation is developed based on the combination of the harmonic balance method and an alternate frequency/time procedure (HB-AFT) in stochastic form. The non-intrusive generalized polynomial chaos expansion (gPCE) with unknown deterministic coefficients is employed to represent the propagation of uncertainties on rotor dynamics. In conjunction with the path continuation scheme and the Floquet theory, the developed model enables one to expediently evaluate the uncertainty bounds and probability density functions (PDFs) on periodic solution branches and associated stabilities. A global sensitivity analysis is then carried out by evaluating Sobol’s indices from gPCE to quantitatively ascertain the relative influence of different stochastic parameters on vibrational behaviors and conditions for the occurrence of rub-impact. The efficiency of the proposed algorithm for nonlinear stochastic dynamics of rub-impact rotors is validated with Monte Carlo simulation. Parametric studies are finally carried out to investigate the effects of multiple random parameters on the probabilistic variability in nonlinear responses of rub-impact rotors, which reveals the necessary to consider input uncertainties in analyses and designs to ensure the sustainable system performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Muszynska, A.: Rotordynamics, pp. 1–1120. CRC Taylor & Francis Group, London (2005)

    MATH  Google Scholar 

  2. Ahmad, S.: Rotor casing contact phenomenon in rotor dynamics. J. Vib. Control 16(9), 1369–1377 (2010)

    Google Scholar 

  3. Jacquet-Richardet, G., Torkhani, M., Cartraud, P., et al.: Rotor to stator contacts in turbomachines. Review and application. Mech. Syst. Sig. Process. 40(2), 401–420 (2013)

    Google Scholar 

  4. Beatty, R.F.: Differentiating rotor response due to radial rubbing. J. Vib. Acoustics Stress Reliab. Design 107, 151–160 (1985)

    Google Scholar 

  5. Piccoli, H.C., Weber, H.I.: Experimental observation of chaotic motion in a rotor with rubbing. Nonlinear Dyn. 16, 55–70 (1998)

    MATH  Google Scholar 

  6. Sawicki, J.T., Padovan, J., Al-Khatib, R.: The dynamics of rotor with rubbing. Int. J. Rotating Mach. 5, 295–304 (1999)

    Google Scholar 

  7. Chang-Jian, C.W., Chen, C.K.: Chaos and bifurcation of a flexible rub-impact rotor supported by oil film bearings with nonlinear suspension. Mech. Mach. Theory 42, 312–333 (2007)

    MATH  Google Scholar 

  8. Varney, P., Green, I.: Nonlinear phenomena, bifurcations, and routes to chaos in an asymmetrically supported rotor-stator contact system. J. Sound Vib. 336, 207–226 (2015)

    Google Scholar 

  9. Hou, L., Chen, H., Chen, Y., Lu, K., Liu, Z.: Bifurcation and stability analysis of a nonlinear rotor system subjected to constant excitation and rub-impact. Mech. Syst. Signal Process. 125, 65–78 (2019)

    Google Scholar 

  10. Chu, F.L., Zhang, Z.S.: Bifurcation and chaos in a rub-impact Jeffcott rotor system. J. Sound Vib. 210, 1–18 (1998)

    Google Scholar 

  11. Chávez, J.P., Wiercigroch, M.: Bifurcation analysis of periodic orbits of a non-smooth Jeffcott rotor model. Commun. Nonlinear Sci. Numer. Simul. 18(9), 2571–2580 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Chávez, J.P., Hamaneh, V.V., Wiercigroch, M.: Modelling and experimental verification of an asymmetric Jeffcott rotor with radial clearance. J. Sound Vib. 334, 86–97 (2015)

    Google Scholar 

  13. Isaksson, J., Frid, A.: Analysis of dynamical behaviour of a rotor with deflection limiters. Acta Mech. 133, 1–11 (1999)

    MATH  Google Scholar 

  14. Yang, Y., Cao, D., Yu, T., Wang, D., Li, C.: Response analysis of a dual-disc rotor system with multi-unbalances-multi-fixed-point rubbing faults. Nonlinear Dyn. 87, 109–125 (2017)

    Google Scholar 

  15. Han, Q., Zhang, Z., Wen, B.: Periodic motions of a dual-disc rotor system with rub-impact at fixed limiter. J. Mech. Eng. Sci. 222, 1935–1946 (2008)

    Google Scholar 

  16. Lahriri, S., Weber, H., Santos, I., et al.: Rotor-stator contact dynamics using a non-ideal drive- theoretical and experimental aspects. J. Sound Vib. 331, 4518–4536 (2012)

    Google Scholar 

  17. Ma, H., Wu, Z., Tai, X., Wen, B.: Dynamic characteristics analysis of a rotor system with two types of limiters. Int. J. Mech. Sci. 88, 192–201 (2014)

    Google Scholar 

  18. Ma, H., Zhao, Q., Zhao, X., Han, Q., Wen, B.: Dynamic characteristics analysis of a rotor-stator system under different rubbing forms. Appl. Math. Model. 39, 2392–2408 (2015)

    MATH  Google Scholar 

  19. Pennacchi, P., Bachschmid, N., Tanzi, E.: Light and short arc rubs in rotating machines: experimental tests and modelling. Mech. Syst. Signal Process. 23, 2205–2227 (2009)

    Google Scholar 

  20. Roques, S., Legrand, M., Cartraud, P., Stoisser, C., Pierre, C.: Modeling of a rotor speed transient response with radial rubbing. J. Sound Vib. 329, 527–546 (2010)

    Google Scholar 

  21. Liu, L., Cao, D., Sun, S.: Dynamic characteristics of a disk-drum-shaft rotor system with rub-impact. Nonlinear Dyn. 80, 1017–1038 (2015)

    Google Scholar 

  22. Childs, D.W.: Fractional-frequency rotor motion due to nonsymmetric clearance effects. ASME J. Energy Power 104, 533–541 (1982)

    Google Scholar 

  23. Diken, H.: Non-linear vibration analysis and sub-harmonic whirl frequencies of the Jeffcott rotor model. J. Sound Vib. 243, 117–125 (2001)

    Google Scholar 

  24. Von Groll, G., Ewins, D.J.: The harmonic balance method with arc-length continuation in rotor/stator contact problems. J. Sound Vib. 241(2), 223–233 (2001)

    Google Scholar 

  25. Kim, T.C., Rook, T.E., Singh, R.: Super- and sub-harmonic response calculations for a torsional system with clearance nonlinearity using the harmonic balance method. J. Sound Vib. 281(3–5), 965–993 (2005)

    Google Scholar 

  26. Kim, Y.B., Noah, S.T.: Quasi-periodic response and stability analysis for a non-linear Jeffcott rotor. J. Sound Vib. 190(2), 239–253 (1996)

    Google Scholar 

  27. Sun, C., Chen, Y., Hou, L.: Nonlinear dynamical behaviors of a complicated dual-rotor aero-engine with rub-impact. Arch. Appl. Mech. 88, 1305–1324 (2018)

    Google Scholar 

  28. Sun, C., Chen, Y., Hou, L.: Steady-state response characteristics of a dual-rotor system induced by rub-impact. Nonlinear Dyn. 86, 91–105 (2016)

    Google Scholar 

  29. Heng, A., Zhang, S., Tan, A., Mathew, J.: Rotating machinery prognostics: state of the art, challenges and opportunities. Mech. Syst. Signal Process. 23(3), 724–739 (2009)

    Google Scholar 

  30. Zhang, Y., Wen, B.C., Leung, A.: Reliability analysis for rotor rubbing. J. Vib. Acoust. 124(1), 58–62 (2002)

    Google Scholar 

  31. Driot, N., Berlioz, A., Lamarque, C.: Stability and stationary response of a skew Jeffcott rotor with geometric uncertainty. J. Comput. Nonlinear Dyn 4(2), 021003 (2009)

    Google Scholar 

  32. Yang, Y.F., Wang, Y.L., Gao, Z.: Nonlinear analysis of a rub-impact rotor with random stiffness under random excitation. Adv. Mech. Eng. 8, 1–12 (2016)

    Google Scholar 

  33. Dourado, A., Cavalini Jr., A., Steffen Jr., V.: Uncertainty quantification techniques applied to rotating systems: a comparative study. J. Vib. Control 24(14), 3010–3025 (2018)

    Google Scholar 

  34. Manan, A., Cooper, J.E.: Prediction of uncertain frequency response function bounds using polynomial chaos expansion. J. Sound Vib. 329, 3348–3358 (2010)

    Google Scholar 

  35. Sinou, J., Didier, J., Faverjon, B.: Stochastic non-linear response of a flexible rotor with local non-linearities. Int. J. Non-Linear Mech. 74, 92–99 (2015)

    Google Scholar 

  36. Didier, J., Sinou, J., Faverjon, B.: Multi-dimensional harmonic balance with uncertainties applied to rotor dynamics. J. Vib. Acoust 134(6), 17061003 (2012)

    Google Scholar 

  37. Sudret, B.: Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Safety 93, 964–979 (2008)

    Google Scholar 

  38. Krack, M., Gross, J.: Harmonic balance for nonlinear vibration problems, pp. 1–159. Springer, Switzerland (2019)

    MATH  Google Scholar 

  39. Xiu, D., Karniadakis, G.E.: Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys. 187(1), 137–167 (2003)

    MathSciNet  MATH  Google Scholar 

  40. Ghanem, R., Spanos, P.: Stochastic finite elements: a spectral approach, pp. 1–219. Dover publications, New York (2003)

    Google Scholar 

  41. Brockwell, A.E.: Universal residuals: a multivariate transformation. Stat. Prob. Lett. 77(14), 1473–1478 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support provided by the National Natural Science Foundation of China (NSFC, Grant No. 51975354).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenguo Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Ma, X., Hua, H. et al. Nonlinear stochastic dynamics of a rub-impact rotor system with probabilistic uncertainties. Nonlinear Dyn 102, 2229–2246 (2020). https://doi.org/10.1007/s11071-020-06064-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06064-w

Keywords

Navigation