Skip to main content
Log in

Fixed-time SOSM controller design with output constraint

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a novel fixed-time second-order sliding mode (SOSM) controller has been developed for a class of nonlinear systems with output constraints. Based on the output constraint condition, a new barrier Lyapunov function, which can be used to deal with the output constraint, is first constructed. Then, with the help of adding a power integrator technique, the SOSM algorithm can be constructed step by step. The feature of the proposed SOSM algorithm lies in that it will not only fixed-time stabilize the sliding variable to the origin, but also keep the output variable staying inside the constraint set. This also implies that the setting time of sliding variables will be independent of their initial conditions. Finally, the feasibility and effectiveness of proposed SOSM control method are verified by a numerical example and a practical pendulum system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Liu, X., Ho, D., Song, Q., Cao, J.: Finite-/fixed-time robust stabilization of switched discontinuous systems with disturbances. Nonlinear Dyn. 90(3), 2057–2068 (2017)

    Article  MathSciNet  Google Scholar 

  2. Hou, Q., Ding, S.: GPIO based super-twisting sliding mode control for PMSM. Circuits Syst. II Exp. Briefs IEEE Trans. (2020). https://doi.org/10.1109/TCSII.2020.3008188

    Article  Google Scholar 

  3. Ding, S., Liu, L., Zheng, W.: Sliding mode direct yaw-moment control design for in-wheel electric vehicles. IEEE Trans. Ind. Electron. 64(8), 6752–6762 (2017)

    Article  Google Scholar 

  4. Ding, S., Li, S.: Second-order sliding mode controller design subject to mismatched term. Automatica 77, 388–392 (2017)

    Article  MathSciNet  Google Scholar 

  5. Ding, S., Chen, W., Mei, K., Murray-Smith, D.: Disturbance observer design for nonlinear systems represented by input-output models. IEEE Trans. Ind. Electron. 67(2), 1222–1232 (2019)

    Article  Google Scholar 

  6. Liu, L., Zheng, W., Ding, S.: An adaptive SOSM controller design by using a Sliding-Mode-Based filter and its application to buck converter. IEEE Trans. Circuits Syst. I Reg. Paper 67(7), 2409–2418 (2020)

    Article  MathSciNet  Google Scholar 

  7. Hou, Q., Ding, S., Yu, X.: Composite super-twisting sliding mode control design for PMSM speed regulation problem based on a novel disturbance observer. IEEE Trans. Energy Convers. (2020). https://doi.org/10.1109/TEC.2020.2985054

    Article  Google Scholar 

  8. Emelyanov, S., Korovin, S., Levantovsky, L.: Second order sliding modes in controlling uncertain systems. Soviet J. Comput. Syst. Sci. 24(4), 63–68 (1986)

    MathSciNet  Google Scholar 

  9. Shtessel, Y., Edwards, C., Fridman, L., Levant, A.: Sliding Mode Control and Observation. Birkhäuser, Boston (2013)

    Google Scholar 

  10. Levant, A.: Principles of 2-sliding mode design. Automatica 43(4), 576–586 (2007)

    Article  MathSciNet  Google Scholar 

  11. Levant, A.: Sliding order and sliding accuracy in sliding mode control. Int. J. Control 58(6), 1247–1263 (1993)

    Article  MathSciNet  Google Scholar 

  12. Bartolini, G., Pisano, A., Usai, E.: An improved second-order sliding mode control scheme robust against the measurement noise. IEEE Trans. Autom. Control 49(10), 1731–1737 (2004)

    Article  MathSciNet  Google Scholar 

  13. Shtessel, Y., Shkolnikov, I., Brown, M.: An asymptotic second order smooth sliding mode control. Asian J. Control 5(4), 498–504 (2003)

    Article  Google Scholar 

  14. Levant, A.: Quasi-continuous high-order sliding mode controllers. IEEE Trans. Autom. Control 50(11), 1812–1816 (2005)

    Article  MathSciNet  Google Scholar 

  15. Sun, Z., Shao, Y., Chen, C.: Fast finite-time stability and its application in adaptive control of high-order nonlinear system. Automatica 106, 339–348 (2019)

    Article  MathSciNet  Google Scholar 

  16. An, H., Guo, Z., Wang, G., Wang, C.: Low-complexity hypersonic flight control with asymmetric angle of attack constraint. Nonlinear Dyn. 100(1), 435–449 (2020)

    Article  Google Scholar 

  17. Sun, Z., Peng, Y., Chen, C.: Fast finite-time adaptive stabilization of high-order uncertain nonlinear system with an asymmetric output constraint. Automatica (2020). https://doi.org/10.1016/j.automatica.2020.109170

    Article  MATH  Google Scholar 

  18. Tee, K., Ge, S., Tay, E.: Barrier Lyapunov functions for the control of output-constrained nonlinear systems. Automatica 45(4), 918–927 (2009)

    Article  MathSciNet  Google Scholar 

  19. Ding, S., Mei, K., Li, S.: A new second-order sliding mode and its application to nonlinear constrained systems. IEEE Trans. Autom. Control 64(6), 2545–2552 (2018)

    Article  MathSciNet  Google Scholar 

  20. Guo, T., Sun, Z., Wang, X., Li, S., Zhang, K.: A simple current constrained controller for permanent-magnet synchronous motor. IEEE Trans. Ind. Inf. 15(3), 1486–1495 (2018)

    Article  Google Scholar 

  21. Kogiso, K., Hirata, K.: Reference governor for constrained systems with time-varying references. Robot. Auton. Syst. 57(3), 289–295 (2009)

    Article  Google Scholar 

  22. Blanchini, F.: Set invariance in control. Automatica 35(11), 1747–1767 (1999)

    Article  MathSciNet  Google Scholar 

  23. Obeid, H., Fridman, L., Laghrouche, S., Harmouche, M.: Barrier function-based adaptive sliding mode control. Automatica 93, 540–544 (2018)

    Article  MathSciNet  Google Scholar 

  24. Chen, C., Sun, Z.: A unified approach to finite-time stabilization of high-order nonlinear systems with an asymmetric output constraint. Automatica 111, 108581 (2020)

    Article  MathSciNet  Google Scholar 

  25. Ni, J., Wu, Z., Liu, L., Liu, C.: Fixed-time adaptive neural network control for nonstrict-feedback nonlinear systems with deadzone and output constraint. ISA Trans. 97, 458–473 (2020)

    Article  Google Scholar 

  26. Ding, S., Park, J., Chen, C.: Second-order sliding mode controller design with output contraint. Automatica 112, 108704 (2020)

    Article  Google Scholar 

  27. Andrieu, V., Praly, L., Astolfi, A.: Homogeneous approximation, recursive observer and output feedback. SIAM J. Control Optim. 47(4), 1814–1850 (2008)

    Article  MathSciNet  Google Scholar 

  28. Polyakov, A.: Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control 57(8), 2106–2110 (2011)

    Article  MathSciNet  Google Scholar 

  29. Zuo, Z., Tian, B., Defoort, M., Ding, Z.: Fixed-time consensus tracking for multiagent systems with high-order integrator dynamics. IEEE Trans. Autom. Control 63(2), 563–570 (2017)

    Article  MathSciNet  Google Scholar 

  30. Zuo, Z., Han, Q., Ning, B.: An explicit estimate for the upper bound of the settling time in fixed-time leader-following consensus of high-order multivariable multiagent systems. IEEE Trans. Ind. Electron. 66(8), 6250–6259 (2018)

    Article  Google Scholar 

  31. Ni, J., Shi, P.: Adaptive neural network fixed-time leader-follower consensus for multiagent systems with constraints and disturbances. IEEE Trans. Cybern. (2020). https://doi.org/10.1109/TCYB.2020.2967995

    Article  Google Scholar 

  32. Sánchez-Torres, J.D., Gómez-Gutiérrez, D., López, E., Loukianov, A.G.: A class of predefined-time stable dynamical systems. IMA J. Math. Control I(35), 1–29 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Aldana-López, R., Gómez-Gutiérrez, D., Jiménez-Rodríguez, E., Sánchez-Torres, J.D., Defoort, M.: Enhancing the settling time estimation of a class of fixed-time stable systems. Int. J. Robust Nonlinear Control 29(12), 4135–4148 (2019)

    Article  MathSciNet  Google Scholar 

  34. Sánchez-Torres, J.D., Defoort, M., Muñoz-Vázquez, A.J.: Predefined-time stabilisation of a class of nonholonomic systems. Int. J. Control (2019). https://doi.org/10.1080/00207179.2019.1569262

    Article  MATH  Google Scholar 

  35. Ni, J., Shi, P.: Global predefined time and accuracy adaptive neural network control for uncertain strict-feedback systems with output constraint and dead zone. IEEE Trans. Syst. Man Cybern. Syst. (2020). https://doi.org/10.1109/TSMC.2020.2994808

    Article  Google Scholar 

  36. Sánchez-Torres, J.D., Muñoz-Vázquez, A.J., Defoort, M., Jiménez-Rodríguez, E., Loukianov, A.G.: A class of predefined-time controllers for uncertain second-order systems. Eur. J. Control 53, 52–58 (2020)

    Article  MathSciNet  Google Scholar 

  37. Cruz-Zavala, E., Moreno, J., Fridman, L.: Uniform sliding mode controllers and uniform sliding surfaces. IMA J. Math. Control I 29(4), 491–505 (2012)

    Article  MathSciNet  Google Scholar 

  38. Dvir, Y., Levant, A.: Accelerated twisting algorithm. IEEE Trans. Autom. Control 60(10), 2803–2807 (2015)

    Article  MathSciNet  Google Scholar 

  39. Harmouche, M., Laghrouche, S., Chitour, Y., Hamerlain, M.: Stabilisation of perturbed chains of integrators using Lyapunov-based homogeneous controllers. Int. J. Control 90(12), 2631–2640 (2017)

    Article  MathSciNet  Google Scholar 

  40. Levant, A.: On fixed and finite time stability in sliding mode control. In: Proceedings of the 52nd IEEE Conference on Decision and Control, pp. 4260-4265. IEEE (2013)

  41. Qian, C., Lin, W.: A continuous feedback approach to global strong stabilization of nonlinear systems. IEEE Trans. Autom. Control 46(7), 1061–1079 (2001)

    Article  MathSciNet  Google Scholar 

  42. He, W., Mu, X., Chen, Y., He, X., Yu, Y.: Modeling and vibration control of the flapping-wing robotic aircraft with output constraint. J. Sound Vib. 423, 472–483 (2018)

    Article  Google Scholar 

  43. Filippov, A.F.: Differential Equations with Discontinuous Right-hand Side, Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers, Boston (1988)

    Book  Google Scholar 

  44. Hong, Y., Jiang, Z.: Finite-time stabilization of nonlinear systems with parametric and dynamic uncertainties. IEEE Trans. Autom. Control 51(12), 1950–1956 (2006)

    Article  MathSciNet  Google Scholar 

  45. Shi, S., Gu, J., Xu, S., Min, H.: Variable-gain second-order sliding mode controller with globally fixed-time stability guarantees. IEEE Trans. Circuits Syst. II Exp. Briefs 67(8), 1414–1418 (2019)

    Article  Google Scholar 

  46. Davila, J., Fridman, L., Levant, A.: Second-order sliding-mode observer for mechanical systems. IEEE Trans. Autom. Control 50(11), 1785–1789 (2005)

    Article  MathSciNet  Google Scholar 

  47. Hardy, G., Littlewood, E., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1952)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSF of China (61973142), the Jiangsu Natural Science Foundation for Distinguished Young Scholars (BK20180045), the Six Talent Peaks Project in Jiangsu Province (XNYQC-006) and the PAPD of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shihong Ding.

Ethics declarations

Conflict of interest

The authors declare that no potential conflict of interest exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Ding, S. & Mei, K. Fixed-time SOSM controller design with output constraint. Nonlinear Dyn 102, 1567–1583 (2020). https://doi.org/10.1007/s11071-020-06049-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06049-9

Keywords

Navigation