Skip to main content
Log in

On the integrability of Hamiltonian 1:2:2 resonance

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We study the integrability of the Hamiltonian normal form of 1:2:2 resonance. It is known that this normal form truncated to order three is integrable. The truncated to order four normal form contains many parameters. For a generic choice of parameters in the normal form up to order four, we carry on non-integrability analysis, based on the Morales–Ramis theory using only first variational equations along certain particular solutions. The non-integrability obtained by algebraic proofs produces dynamics illustrated by some numerical experiments.We also isolate a non-trivial case of integrability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arnold, V., Kozlov, V., Neishtadt, A.: Mathematical aspects of classical and celestial mechanics. In: Dynamical Systems III. Springer, New York (2006)

  2. Balser, W., Jurkat, W., Lutz, D.: Birkhoff invariants and Stokes’ multipliers for meromorphic linear differntial equations. J. Math. Anal. Appl. 71, 48–94 (1979)

    Article  MathSciNet  Google Scholar 

  3. Christov, O.: Non-integrability of first order resonances in Hamiltonian systems in three degrees of freedom. Celest. Mech. Dyn. Astr. 112, 149–167 (2012)

    Article  MathSciNet  Google Scholar 

  4. Duval, A., Loday-Richaud, M.: Kovacic’s algorithm and its applications to some families of special functions. Appl. Algebra Eng. Commun. Comput. 3, 211–246 (1992)

    Article  MathSciNet  Google Scholar 

  5. Ford, J.: The statistical mechanics of classical analytic dynamics. In: Cohen, E.D.G. (ed.) Fundamental Problems in Statistical Mechanics, vol. 3 (1975)

  6. Haller, G., Wiggins, S.: Geometry and chaos near resonant equilibria of 3-DOF Hamiltonian systems. Phys. D 90, 319–365 (1996)

    Article  MathSciNet  Google Scholar 

  7. Haller, G.: Chaos near Resonance. App. Math. Sciences, vol. 138. Springer, New York (1999)

    Book  Google Scholar 

  8. Hansmann, H.: Local and Semi-Local Bifurcations in Hamiltonian Dynamical Systems: Results and Examples. Lecture Notes in Mathematics, vol. 1893. Springer, Berlin (2007)

    Google Scholar 

  9. Kovacic, J.: An algorithm for solving second order linear homogeneous differential equations. J. Symb. Comput. 2(1), 3–43 (1986)

    Article  MathSciNet  Google Scholar 

  10. Kozlov, V.: Symmetry, Topology and Resonances in Hamiltonian Mechanics. Springer, Berlin (1996)

    Book  Google Scholar 

  11. Kummer, M.: On resonant Hamiltonian systems with finitely many degrees of freedom. In: Sáenz, A., et al. (eds.) Local and global methods of nonlinear dynamics, Silver Spring 1984, Lecture Notes in Physiscs, vol. 252, pp. 19–31. Springer, Berlin (1986)

  12. Lyapounov, A.M.: On a certain property of the differential equations of the problem of motion of a heavy rigid body having a fixed point. Soobsch. Kharkov Math. Obshch. 4, 123–140 (1894). (in Russian)

    Google Scholar 

  13. Magid, A.: Lectures on Differential Galois Theory, vol. 7. University lecture series, AMS, Providence (1994)

    MATH  Google Scholar 

  14. Martinet, J., Ramis, J.-P.: Théorie de Galois différentielle et Resommation, Computer Algebra and Differntial Equations, pp. 117–214. Academic Press, London (1989)

    Google Scholar 

  15. Mitschi, C.: Differential Galois Groups and G-Functions, Computer Algebra and Differential Equations, Academic Press, London, 149-180 (1991) vol. 1893, Springer, Berlin (2007)

  16. Morales-Ruiz, J.: Differential Galois Theory and Non integrability of Hamiltonian Systems. Prog. in Math., vol. 179. Birkhäuser, Basel (1999)

    Book  Google Scholar 

  17. Morales-Ruis, J.: Kovalevskaya, Liapounov, Painlevé, Ziglin and differntial galois theory. Regul. Chaotic Dyn. 5(3), 251–272 (2000)

    Article  MathSciNet  Google Scholar 

  18. Morales-Ruiz, J., Simó, C., Simon, S.: Algebraic proof of the non-integrability of Hill’s problem. Ergod. Theory Dyn. Syst. 25, 1237–1256 (2005)

    Article  MathSciNet  Google Scholar 

  19. Morales-Ruiz, J., Ramis, J.-P., Simó, C.: Integrability of Hamiltonian systems and differential Galois groups of higher variational equations. Annales scientifiques de l’École normale supérieure 40, 845–884 (2007)

    Article  MathSciNet  Google Scholar 

  20. Morales-Ruiz, J., Ramis, J.-P.: Integrability of Dynamical systems through Differential Galois Theory: practical guide. Contemporary Math. 509 (2010)

  21. Rink, B.: Symmetry and resonance in periodic FPU-chains. Commun. Math. Phys. 218, 665–685 (2001)

    Article  MathSciNet  Google Scholar 

  22. Sanders, J., Verhulst, F., Murdock, J.: Averaging methods in Nonlinear Dynamical Systems. Appl. Math. Sci., vol. 59. Springer, Berlin (2007)

    MATH  Google Scholar 

  23. Singer, M.: Introduction to the Galois theory of linear differential equations, Algebraic theory of differential equations. Lond. Math. Soc. Lect. Note Ser. Cambridge Univ. Press 2(357), 1–82 (2009)

    MATH  Google Scholar 

  24. Van der Aa, E.: First order resonances in three degrees of freedom. Celest. Mech. 31, 163–191 (1983)

    Article  MathSciNet  Google Scholar 

  25. Van der Aa, E., Verhulst, F.: Asymptotic integrability and periodic solutions of a Hamiltonian system in 1: 2: 2 resonance. SIAM J. Math. Anal. 15, 890–911 (1983)

    MathSciNet  MATH  Google Scholar 

  26. Van der Put, M., Singer, M.: Galois Theory of Linear Differential Equations. Grundlehren der Mathematischen Wissenschaften, vol. 328. Springer, Berlin (2003)

    Google Scholar 

  27. Verhulst, F.: Symmetry and integrability in Hamiltonian normal forms. In: Bambusi, D., Gaeta, G. (eds.) Symmetry and Perturbation Theory, Quadern GNFM, pp. 245–284. Farenze (1998)

  28. Verhulst, F.: Integrability and non-integrability of Hamiltonian normal forms. Acta Appl. Math. 137, 253–272 (2015)

    Article  MathSciNet  Google Scholar 

  29. Ziglin, S.: Branching of solutions and non-existence of first integrals in Hamiltonian mechanics. Func. Anal. Appl., I 16, 30–41 (1982)

    MathSciNet  Google Scholar 

  30. Ziglin, S.: Branching of solutions and non-existence of first integrals in Hamiltonian mechanics. Func. Anal. Appl., II 17, 8–23 (1983)

    MathSciNet  Google Scholar 

  31. Żoładek, H.: The Monodromy Group, Monografie Matematyczne, vol. 67. Birkhäuser, Basel (2006)

    Google Scholar 

Download references

Acknowledgements

I would like to thank the reviewers for their suggestions which significantly improved the text. This work is partially supported by Grant DN 02-5 of Bulgarian Fund “Scientific Research.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ognyan Christov.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christov, O. On the integrability of Hamiltonian 1:2:2 resonance. Nonlinear Dyn 102, 2295–2309 (2020). https://doi.org/10.1007/s11071-020-06036-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06036-0

Keywords

Mathematics Subject Classification

Navigation