Skip to main content

Advertisement

Log in

Modelling of coupled cross-flow and in-line vortex-induced vibrations of flexible cylindrical structures. Part II: on the importance of in-line coupling

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

To illustrate the influence of the in-line coupling on the prediction of vortex-induced vibration (VIV), the simulation results of the coupled cross-flow and in-line VIVs of flexible cylinders- obtained with three different wake oscillator models with and without the in-line coupling- are compared and studied in this paper. Both the cases of uniform and linearly sheared flow are analysed and the simulation results of the three models are compared with each other from the viewpoints of response pattern, fluid force, energy transfer and fatigue damage. The differences between the simulation results from the three models highlight the importance of the in-line coupling on the prediction of coupled cross-flow and in-line VIVs of flexible cylindrical structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

References

  1. Jauvtis, N., Williamson, C.H.K.: The effect of two degrees of freedom on vortex-induced vibration at low mass and damping. J. Fluid Mech. 509, 23–62 (2004)

    Article  Google Scholar 

  2. Dahl, J.M., Hover, F.S., Triantafyllou, M.S., Dong, S., Karniadakis, G.E.: Resonant vibrations of bluff bodies cause multivortex shedding and high frequency forces. Phys. Rev. Lett. 99(14), 144503 (2007)

    Article  Google Scholar 

  3. Wu, J., Lie, H., Larsen, C.M., Liapis, S., Baarholm, R.: Vortex-induced vibration of a flexible cylinder: interaction of the in-line and cross-flow responses. J. Fluids Struct. 63, 238–258 (2016)

    Article  Google Scholar 

  4. Song, L., Fu, S., Cao, J., Ma, L., Wu, J.: An investigation into the hydrodynamics of a flexible riser undergoing vortex-induced vibration. J. Fluids Struct. 63, 325–350 (2016)

    Article  Google Scholar 

  5. Song, L., Fu, S., Ren, T., Lu, Z.: Phase angles of the vibrations and hydrodynamic forces of the flexible risers undergoing vortex-induced vibration. ASME. J. Offshore Mech. Arct. Eng. 139(3), 031803 (2017)

    Article  Google Scholar 

  6. Vandiver, J.K., Jaiswal, V., Jhingran, V.: Insights on vortex-induced, traveling waves on long risers. J. Fluids Struct. 25(4), 641–653 (2009)

    Article  Google Scholar 

  7. Dahl, J.M.: Vortex-induced vibration of a circular cylinder with combined in-line and cross-flow motion. PhD thesis, Massachusetts Institute of Technology, MA (2008)

  8. Srinil, N., Zanganeh, H.: Modelling of coupled cross-flow/in-line vortex-induced vibrations using double duffing and van der pol oscillators. Ocean Eng. 53, 83–97 (2012)

    Article  Google Scholar 

  9. Postnikov, A., Pavlovskaia, E., Wiercigroch, M.: 2DOF CFD calibrated wake oscillator model to investigate vortex-induced vibrations. Int. J. Mech. Sci. 127(Supplement C), 176–190 (2017)

    Article  Google Scholar 

  10. Qu, Y., Metrikine, A.: A single van der pol wake oscillator model for coupled cross-flow and in-line vortex-induced vibrations. Ocean Eng. 196, 106732 (2020)

    Article  Google Scholar 

  11. Facchinetti, M., de Langre, E., Biolley, F.: Coupling of structure and wake oscillators in vortex-induced vibrations. J. Fluids Struct. 19, 123–140 (2004)

    Article  Google Scholar 

  12. Mina, A.: Modeling the vortex-induced vibrations of a multi-span free standing riser. Master Thesis, Delft University of Technology, Delft (2013)

  13. Bai, Xu, Qin, W.: Using vortex strength wake oscillator in modelling of vortex induced vibrations in two degrees of freedom. Eur. J. Mech. B. Fluids 48, 165–173 (2014)

    Article  MathSciNet  Google Scholar 

  14. Ogink, R., Metrikine, A.: A wake oscillator with frequency dependent coupling for the modeling of vortex-induced vibration. J. Sound Vib. 329, 5452–5473 (2010)

    Article  Google Scholar 

  15. Qin, L.: Development of Reduced-Order Models for Lift and Drag on Oscillating Cylinders with Higher-Order Spectral Moments. PhD thesis, Virginia Polytechnic Institute and State University, VA (2004)

  16. Lie, H., Henning, B., Jhingran, V.G., Sequeiros, O.E., Kim, V.: Comprehensive riser VIV model tests in uniform and sheared flow. OMAE2012 5, 923–930 (2012)

    Article  Google Scholar 

  17. Géradin, M., Cardona, A.: Flexible Multibody Dynamics: A Finite Element Approach. Wiley, New York (2001)

    Google Scholar 

  18. Chaplin, J.R., Bearman, P.W., Huera-Huarte, F.J., Pattenden, R.: Laboratory measurements of vortex-induced vibrations of a vertical tension riser in a stepped current. J. Fluids Struct. 21(1), 3–24 (2005)

    Article  Google Scholar 

  19. Huera-Huarte, F.J.: Multi-mode vortex induced vibration of a flexible circular cylinder. Ph.D. thesis. Imperial College London, London (2004)

    Google Scholar 

  20. Bourguet, R., Karniadakis, G., Triantafyllou, M.: Vortex-induced vibrations of a long flexible cylinder in shear flow. J. Fluid Mech. 677, 342–382 (2011)

    Article  MathSciNet  Google Scholar 

  21. Trim, A., Braaten, H., Lie, H., Tognarelli, M.: Experimental investigation of vortex-induced vibration of long marine risers. J. Fluids Struct. 21(3), 335–361 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The first author would like to thank the China Scholarship Council (CSC) (No. 201206450001) and the National Natural Science Foundation of China (Grant No. U19B2013) for the financial support to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Qu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, Y., Metrikine, A.V. Modelling of coupled cross-flow and in-line vortex-induced vibrations of flexible cylindrical structures. Part II: on the importance of in-line coupling. Nonlinear Dyn 103, 3083–3112 (2021). https://doi.org/10.1007/s11071-020-06027-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06027-1

Keywords

Navigation