Skip to main content
Log in

Investigation of transverse galloping in the presence of structural nonlinearities: theory and experiment

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We formulate and experimentally validate a theoretical reduced-order model for the transverse galloping of nonlinear structures, namely a pair of identical, parallel-oriented cantilever beams whose free ends are attached to square prisms. We derive the structural nonlinearities from (a) a single-mode approximation of the nonlinear (truncated at cubic order) equation of motion, calculated for conservative cantilever beams augmented by a non-conservative aerodynamic force acting on a prism; and (b) phenomenological linear, quadratic, and cubic damping forces. We estimate the coefficients of the damping forces from the ring-down responses of the structures in still air. We analyze the deterministic dynamics of transverse galloping that stem from the aerodynamic force of the quasi-steady theory, and the stochastic effect of spectral line broadening that stem from turbulence-induced random fluctuations. Our findings clearly show that standard nonlinear macroscopic structures exhibit considerably different steady-state response curves than the universal curve of Parkinson obtained for linear mass–spring–damper structures. Importantly, the amplitudes of the oscillations are attenuated at high upstream velocities due to nonlinear damping, while the spectral line broadens due to turbulence-induced random fluctuations and an amplitude-to-phase noise conversion, which lowers the quality of the self-sustained oscillations. These two phenomena should be considered in the design of efficient transverse galloping-based energy harvesters—a rapidly growing field of research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Den Hartog, J.: Transmission line vibration due to sleet. Trans. Am. Inst. Electr. Eng. 51(4), 1074 (1932)

    Google Scholar 

  2. Bokaian, A., Geoola, F.: Effects of vortex-resonance on nearby galloping instability. J. Eng. Mech. 111(5), 591 (1985)

    Google Scholar 

  3. Simiu, E., Scanlan, R.H.: Wind Effects on Structures. Wiley, London (1996)

    Google Scholar 

  4. Pulipaka, N., Sarkar, P.P., McDonald, J.R.: On galloping vibration of traffic signal structures. J. Wind Eng. Ind. Aerodyn. 77, 327 (1998)

    Google Scholar 

  5. Avila-Sanchez, S., Lopez-Garcia, O., Cuerva, A., Meseguer, J.: Assesment of the transverse galloping stability of a railway overhead located above a railway bridge. Int. J. Mech. Sci. 131, 649 (2017)

    Google Scholar 

  6. Barrero-Gil, A., Alonso, G., Sanz-Andres, A.: Energy harvesting from transverse galloping. J. Sound Vib. 329(14), 2873 (2010)

    Google Scholar 

  7. Jung, H.J., Lee, S.W.: The experimental validation of a new energy harvesting system based on the wake galloping phenomenon. Smart Mater. Struct. 20(5), 055022 (2011)

    Google Scholar 

  8. Abdelkefi, A., Hajj, M., Nayfeh, A.: Piezoelectric energy harvesting from transverse galloping of bluff bodies. Smart Mater. Struct. 22(1), 015014 (2012)

    Google Scholar 

  9. Yang, Y., Zhao, L., Tang, L.: Comparative study of tip cross-sections for efficient galloping energy harvesting. Appl. Phys. Lett. 102(6), 064105 (2013)

    Google Scholar 

  10. Andrianne, T., Aryoputro, R.P., Laurent, P., Colson, G., Amandolèse, X., Hémon, P.: Energy harvesting from different aeroelastic instabilities of a square cylinder. J. Wind Eng. Ind. Aerodyn. 172, 164 (2018)

    Google Scholar 

  11. Dai, H., Yang, Y., Abdelkefi, A., Wang, L.: Nonlinear analysis and characteristics of inductive galloping energy harvesters. Commun. Nonlinear Sci. Numer. Simul. 59, 580 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Parkinson, G., Brooks, N.: On the aeroelastic instability of bluff cylinders. J. Appl. Mech. 28(2), 252 (1961)

    MATH  Google Scholar 

  13. Parkinson, G., Smith, J.: The square prism as an aeroelastic non-linear oscillator. Q. J. Mech. Appl. Math. 17(2), 225 (1964)

    MATH  Google Scholar 

  14. Parkinson, G., Wawzonek, M.: Some considerations of combined effects of galloping and vortex resonance. J. Wind Eng. Ind. Aerodyn. 8(1–2), 135 (1981)

    Google Scholar 

  15. Obasaju, E.: An investigation of the effects of incidence on the flow around a square section cylinder. Aeronaut. Q. 34(4), 243 (1983)

    Google Scholar 

  16. Nakamura, Y., Matsukawa, T.: Vortex excitation of rectangular cylinders with a long side normal to the flow. J. Fluid Mech. 180, 171 (1987)

    Google Scholar 

  17. Bearman, P., Gartshore, I., Maull, D., Parkinson, G.: Experiments on flow-induced vibration of a square-section cylinder. J. Fluids Struct. 1(1), 19 (1987)

    Google Scholar 

  18. Bearman, P., Luo, S.: Investigation of the aerodynamic instability of a square-section cylinder by forced oscillation. J. Fluids Struct. 2(2), 161 (1988)

    Google Scholar 

  19. Mannini, C., Marra, A., Bartoli, G.: VIV-galloping instability of rectangular cylinders: review and new experiments. J. Wind Eng. Ind. Aerodyn. 132, 109 (2014)

    Google Scholar 

  20. Mannini, C., Marra, A.M., Bartoli, G.: Experimental investigation on VIV-galloping interaction of a rectangular 3: 2 cylinder. Meccanica 50(3), 841 (2015)

    Google Scholar 

  21. Mannini, C., Marra, A.M., Massai, T., Bartoli, G.: Interference of vortex-induced vibration and transverse galloping for a rectangular cylinder. J. Fluids Struct. 66, 403 (2016)

    Google Scholar 

  22. Mannini, C., Massai, T., Marra, A.M., Bartoli, G.: Interference of vortex-induced vibration and galloping: experiments and mathematical modelling. Proc. Eng. 199, 3133 (2017)

    Google Scholar 

  23. Mannini, C., Massai, T., Marra, A.M.: Unsteady galloping of a rectangular cylinder in turbulent flow. J. Wind Eng. Ind. Aerodyn. 173, 210 (2018)

    Google Scholar 

  24. Mannini, C., Massai, T., Marra, A.M.: Modeling the interference of vortex-induced vibration and galloping for a slender rectangular prism. J. Sound Vib. 419, 493 (2018)

    Google Scholar 

  25. Luongo, A., Di Fabio, F.: Multimodal galloping of dense spectra structures. J. Wind Eng. Ind. Aerodyn. 48(2–3), 163 (1993)

    Google Scholar 

  26. Luongo, A., Piccardo, G.: Non-linear galloping of sagged cables in 1: 2 internal resonance. J. Sound Vib. 214(5), 915 (1998)

    Google Scholar 

  27. Luongo, A., Paolone, A., Piccardo, G.: Postcritical behavior of cables undergoing two simultaneous galloping modes. Meccanica 33(3), 229 (1998)

    MATH  Google Scholar 

  28. Luongo, A., Piccardo, G.: Linear instability mechanisms for coupled translational galloping. J. Sound Vib. 288(4–5), 1027 (2005)

    Google Scholar 

  29. Luongo, A., Zulli, D., Piccardo, G.: Analytical and numerical approaches to nonlinear galloping of internally resonant suspended cables. J. Sound Vib. 315(3), 375 (2008)

    Google Scholar 

  30. Luongo, A., Zulli, D., Piccardo, G.: On the effect of twist angle on nonlinear galloping of suspended cables. Comput. Struct. 87(15–16), 1003 (2009)

    Google Scholar 

  31. Alonso, G., Valero, E., Meseguer, J.: An analysis on the dependence on cross section geometry of galloping stability of two-dimensional bodies having either biconvex or rhomboidal cross sections. Eur. J. Mech.-B/Fluids 28(2), 328 (2009)

    MATH  Google Scholar 

  32. Alonso, G., Meseguer, J., Sanz-Andrés, A., Valero, E.: On the galloping instability of two-dimensional bodies having elliptical cross-sections. J. Wind Eng. Ind. Aerodyn. 98(8–9), 438 (2010)

    Google Scholar 

  33. Alonso, G., Sanz-Lobera, A., Meseguer, J.: Hysteresis phenomena in transverse galloping of triangular cross-section bodies. J. Fluids Struct. 33, 243 (2012)

    Google Scholar 

  34. Ibarra, D., Sorribes, F., Alonso, G., Meseguer, J.: Transverse galloping of two-dimensional bodies having a rhombic cross-section. J. Sound Vib. 333(13), 2855 (2014)

    Google Scholar 

  35. Gandia, F., Meseguer, J., Sanz-Andrés, A.: Static and dynamic experimental analysis of the galloping stability of porous h-section beams. Sci. World J. 2014 (2014)

  36. Alonso, G., Perez-Grande, I., Meseguer, J.: Galloping instabilities of Z-shaped shading louvers. Indoor Built Environ. 26(9), 1198 (2017)

    Google Scholar 

  37. Luo, S., Chew, Y., Ng, Y.: Hysteresis phenomenon in the galloping oscillation of a square cylinder. J. Fluids Struct. 18(1), 103 (2003)

    Google Scholar 

  38. Ng, Y., Luo, S., Chew, Y.: On using high-order polynomial curve fits in the quasi-steady theory for square-cylinder galloping. J. Fluids Struct. 20(1), 141 (2005)

    Google Scholar 

  39. Barrero-Gil, A., Sanz-Andrés, A., Alonso, G.: Hysteresis in transverse galloping: the role of the inflection points. J. Fluids Struct. 25(6), 1007 (2009)

    Google Scholar 

  40. Kluger, J., Moon, F., Rand, R.: Shape optimization of a blunt body vibro-wind galloping oscillator. J. Fluids Struct. 40, 185 (2013)

    Google Scholar 

  41. Sorribes-Palmer, F., Sanz-Andres, A.: Optimization of energy extraction in transverse galloping. J. Fluids Struct. 43, 124 (2013)

    Google Scholar 

  42. Noel, J., Yadav, R., Li, G., Daqaq, M.: Improving the performance of galloping micro-power generators by passively manipulating the trailing edge. Appl. Phys. Lett. 112(8), 083503 (2018)

    Google Scholar 

  43. Crespo da Silva, M., Glynn, C.: Nonlinear flexural–flexural–torsional dynamics of inextensional beams. I. Equations of motion. J. Struct. Mech. 6(4), 437 (1978)

  44. Nayfeh, A.H., Pai, P.F.: Linear and Nonlinear Structural Mechanics. Wiley, London (2008)

    MATH  Google Scholar 

  45. Lamb, H.: Hydrodynamics, 6th edn. Cambridge University Press, Cambridge (1932)

  46. Sumer, B.M. et al., Hydrodynamics around cylindrical strucures, vol. 26 (World scientific, 2006)

  47. Amabili, M.: Derivation of nonlinear damping from viscoelasticity in case of nonlinear vibrations. Nonlinear Dyn. 97(3), 1785 (2019)

    MathSciNet  Google Scholar 

  48. Zaitsev, S., Shtempluck, O., Buks, E., Gottlieb, O.: Nonlinear damping in a micromechanical oscillator. Nonlinear Dyn. 67(1), 859 (2012)

    MATH  Google Scholar 

  49. Dykman, M., Krivoglaz, M.: Classical theory of nonlinear oscillators interacting with a medium. Phys. Status Solidi (b) 48(2), 497 (1971)

  50. Croy, A., Midtvedt, D., Isacsson, A., Kinaret, J.M.: Nonlinear damping in graphene resonators. Physical Review B 86(23), 235435 (2012)

    Google Scholar 

  51. Shoshani, O., Shaw, S.W., Dykman, M.I.: Anomalous decay of nanomechanical modes going through nonlinear resonance. Sci. Rep. 7(1), 1 (2017)

    Google Scholar 

  52. Shoshani, O.: Theoretical aspects of transverse galloping. Nonlinear Dyn. 94(4), 2685 (2018)

    Google Scholar 

  53. Joly, A., Etienne, S., Pelletier, D.: Galloping of square cylinders in cross-flow at low Reynolds numbers. J. Fluids Struct. 28, 232 (2012)

    Google Scholar 

  54. Païdoussis, M.P., Price, S.J., De Langre, E.: Fluid–Structure Interactions: Cross-Flow-Induced Instabilities. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  55. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (2011)

    MATH  Google Scholar 

  56. Stratonovich, R.L.: Topics in the Theory of Random Noise, vol. 2. CRC Press, London (1967)

    MATH  Google Scholar 

  57. Wiener, N., et al.: Generalized harmonic analysis. Acta Math. 55, 117 (1930)

    MathSciNet  MATH  Google Scholar 

  58. Khinchin, A.Y.: Theory of correlation of stationary stochastic processes. Uspekhi Matematicheskikh Nauk 5, 42 (1938)

  59. Pikovsky, A., Kurths, J., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences, vol. 12. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  60. Polunin, P., Yang, Y., Atalaya, J., Ng, E., Strachan, S., Shoshani, O., Dykman, M., Shaw, S., Kenny, T.: Characterizing MEMS nonlinearities directly: the ring-down measurements. In: 2015 Transducers-2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS). IEEE, pp. 2176–2179 (2015)

  61. Polunin, P.M., Yang, Y., Dykman, M.I., Kenny, T.W., Shaw, S.W.: Characterization of MEMS resonator nonlinearities using the ringdown response. J. Microelectromech. Syst. 25(2), 297 (2016)

    Google Scholar 

  62. Polunin, P.M.: Nonlinearities and noise in micromechanical resonators: From understanding to characterization and design tools. Michigan State University, Michigan (2016)

  63. Parkinson, G.: Phenomena and modelling of flow-induced vibrations of bluff bodies. Prog. Aerosp. Sci. 26(2), 169 (1989)

    MathSciNet  Google Scholar 

  64. Luongo, A., Rega, G., Vestroni, F.: On nonlinear dynamics of planar shear indeformable beams (1986)

  65. Demir, A., Mehrotra, A., Roychowdhury, J., Roychowdhury, J.: Phase noise in oscillators: A unifying theory and numerical methods for characterisation. In: Proceedings of the 35th Annual Design Automation Conference. ACM, pp. 26–31 (1998)

  66. Levantino, S., Samori, C., Zanchi, A., Lacaita, A.L.: AM-to-PM conversion in varactor-tuned oscillators. IEEE Trans. Circuits Syst. II Anal. Digit. Signal Process. 49(7), 509 (2002)

    Google Scholar 

  67. Franzini, G.R., Santos, R.C.S., Pesce, C.P.: A numerical study on piezoelectric energy harvesting by combining transverse galloping and parametric instability phenomena. J. Mar. Sci. Appl. 16(4), 465 (2017)

    Google Scholar 

  68. Liu, F.R., Zhang, W.M., Peng, Z.K., Meng, G.: Fork-shaped bluff body for enhancing the performance of galloping-based wind energy harvester. Energy 183, 92 (2019)

    Google Scholar 

  69. Barrero-Gil, A., Vicente-Ludlam, D., Gutierrez, D., Sastre, F., et al.: Enhance of energy harvesting from transverse galloping by actively rotating the galloping body. Energies 13(1), 1 (2019)

    Google Scholar 

  70. Tan, T., Hu, X., Yan, Z., Zhang, W.: Enhanced low-velocity wind energy harvesting from transverse galloping with super capacitor. Energy 187, 115915 (2019)

    Google Scholar 

  71. Zhang, J., Zhang, X., Shu, C., Fang, Z., Ning, Y.: Modeling and nonlinear analysis of stepped beam energy harvesting from galloping vibrations. J. Sound Vib. 115354 (2020)

  72. Shoshani, O., Heywood, D., Yang, Y., Kenny, T.W., Shaw, S.W.: Phase noise reduction in an MEMS oscillator using a nonlinearly enhanced synchronization domain. J. Microelectromech. Syst. 25(5), 870 (2016)

    Google Scholar 

  73. Chang, H.C., Cao, X., Mishra, U.K., York, R.A.: Phase noise in coupled oscillators: theory and experiment. IEEE Trans. Microw. Theory Tech. 45(5), 604 (1997)

    Google Scholar 

Download references

Acknowledgements

The support from the technical staff of the Mechanical Engineering Department in Ben-Gurion University of the Negev, monitored by Dr. Israel Bronstein, is gratefully acknowledged. The authors would especially like to thank Oshri Knafo, and the undergraduate students: Tal Gilboa, Tomer Pnini, Ziv Maimon, and Liav Biton, for their technical support in the wind tunnel experiments.

Funding

This work was supported, in part, by the Pearlstone Center of Aeronautical Engineering Studies at Ben-Gurion University of the Negev.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oriel Shoshani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Coefficients of the aerodynamic force

Appendix: Coefficients of the aerodynamic force

Table 2 .

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Regev, S., Shoshani, O. Investigation of transverse galloping in the presence of structural nonlinearities: theory and experiment. Nonlinear Dyn 102, 1197–1207 (2020). https://doi.org/10.1007/s11071-020-06026-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06026-2

Keywords

Navigation