Skip to main content

Advertisement

Log in

Dwell-time-based energy scheduling and distributed control for large-scale nonlinear systems under Round-Robin protocol

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a distributed control problem is investigated for large-scale nonlinear systems under Round-Robin (RR) protocol and the energy constraint. The large-scale system is composed of several interconnected nonlinear subsystems that are equipped with independent sensors. RR protocol is adapted to coordinate the data transmission of each sensor from the viewpoint of fairness. Moreover, an energy scheduling scheme is employed in response to the energy constraint by distributing high energy or low energy to sensors. The transmissions (between sensors and controllers) with high energy can be accurate. Correspondingly, the accessed data may be lost with a certain probability when sensors use low energy. This paper aims to design the scheduling scheme and distributed controllers jointly such that the stochastic finite-time boundedness (FTB) can be guaranteed for large-scale nonlinear systems with limited energy and communication protocols over a finite horizon. In light of the energy allocations and the induced packet dropout, novel distributed controllers are established for large-scale systems. Furthermore, the explicit expressions of the controller for each subsystem and the energy scheduling scheme with average dwell time (ADT) are derived by using recursive design methods combined with stochastic analysis. Finally, two simulation examples are given to demonstrate the effectiveness of the designed scheme and controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sandell, N.R., Varaiya, P., Athans, M., Safonov, M.G.: Survey of decentralized control methods for large-scale systems. IEEE Trans. Autom. Control 23(2), 108–128 (1978)

    Article  MathSciNet  Google Scholar 

  2. Tong, S., Liu, C., Li, Y.: Fuzzy-adaptive decentralized output-feedback control for large-scale nonlinear systems with dynamical uncertainties. IEEE Trans. Fuzzy Syst. 18(5), 845–861 (2010)

    Article  Google Scholar 

  3. Su, Z., Qian, C., Hao, Y., Zhao, M.: Global stabilization via sampled-data output feedback for large-scale systems interconnected by inherent nonlinearities. Automatica 92, 254–258 (2018)

    Article  MathSciNet  Google Scholar 

  4. Wei, C., Luo, J., Dai, H., Yin, Z., Yuan, J.: Low-complexity differentiator-based decentralized fault-tolerant control of uncertain large-scale nonlinear systems with unknown dead zone. Nonlinear Dyn. 89(4), 2573–2592 (2017)

    Article  MathSciNet  Google Scholar 

  5. Roshany-Yamchi, S., Cychowski, M., Negenborn, R.R., Schutter, B.D., Delaney, K., Connell, J.: Kalman filter-based distributed predictive control of large-scale multi-rate systems: application to power networks. IEEE Trans. Control Syst. Technol. 21(1), 27–39 (2013)

    Article  Google Scholar 

  6. Zhong, Z., Fu, S., Hayat, T., Alsaadi, F., Sun, G.: Decentralized piecewise fuzzy filtering design for discrete-time large-scale nonlinear systems with time-varying delay. J. Frankl. Inst. 352(9), 3782–3807 (2015)

    Article  MathSciNet  Google Scholar 

  7. Khan, U.A., Moura, J.M.F.: Distributing the kalman filter for large-scale systems. IEEE Trans. Signal Process. 56(10), 4919–4935 (2008)

    Article  MathSciNet  Google Scholar 

  8. Bai, F., Gu, F., Hu, X., Guo, S.: Particle routing in distributed particle filters for large-scale spatial temporal systems. IEEE Trans. Parallel Distrib. Syst. 27(2), 481–493 (2016)

    Article  Google Scholar 

  9. Ferrari, R.M.G., Parisini, T., Polycarpou, M.M.: Distributed fault detection and isolation of large-scale discrete-time nonlinear systems,: an adaptive approximation approach. IEEE Trans. Autom. Control 57(2), 275–290 (2012)

    Article  MathSciNet  Google Scholar 

  10. Ding, D., Wang, Z., Daniel, W.C.H., Wei, G.: Distributed recursive filtering for stochastic systems under uniform quantizations and deception attacks through sensor networks. Automatica 78, 231–240 (2017)

    Article  MathSciNet  Google Scholar 

  11. Chen, G., Guo, Z.: Observer-based distributed control and synchronization analysis of inverter-based nonlinear power systems. Nonlinear Dyn. 99(3), 2161–2183 (2020)

    Article  Google Scholar 

  12. Liu, K., Fridman, E., Xia, Y.: Networked Control under Communication Constraints. Springer, Berlin (2020)

    Book  Google Scholar 

  13. Ju, Y., Wei, G., Ding, D., Zhang, S.: Fault detection for discrete time-delay networked systems with round-robin protocol in finite-frequency domain. Int. J. Syst. Sci. 50(13), 2497–2509 (2019)

    Article  MathSciNet  Google Scholar 

  14. Mao, J., Ding, D., Wei, G., Liu, H.: Networked recursive filtering for time-delayed nonlinear stochastic systems with uniform quantisation under Round-Robin protocol. Int. J. Syst. Sci. 50(4), 871–884 (2019)

    Article  MathSciNet  Google Scholar 

  15. Zhang, J., Peng, C.: Networked \(H_\infty \) filtering under a weighted TOD protocol. Automatica 107, 333–341 (2019)

    Article  MathSciNet  Google Scholar 

  16. Zhang, J., Peng, C., Xie, X., Yue, D.: Output Feedback stabilization of networked control systems under a stochastic scheduling protocol. IEEE Trans. Cybern. 50(6), 2851–2860 (2020)

    Article  Google Scholar 

  17. Liu, K., Fridman, E., Johansson, K.H.: Networked control with stochastic scheduling. IEEE Trans. Autom. Control 60(11), 3071–3076 (2015)

    Article  MathSciNet  Google Scholar 

  18. Shang, H., Zong, G.: Event-triggered sliding mode control under the Round-Robin protocol for networked switched systems. Nonlinear Dyn. (2020). https://doi.org/10.1007/s11071-020-05618-2

    Article  Google Scholar 

  19. Liu, K., Selivanov, A., Fridman, E.: Survey on time-delay approach to networked control. Annu. Rev. Control 48, 57–79 (2019)

    Article  MathSciNet  Google Scholar 

  20. Zhang, J., Fridman, E.: Networked control of stochastic systems with scheduling protocols. In: 23rd European Control Conference, pp. 3002–3007 (2019)

  21. Ding, D., Wang, Z., Han, Q., Wei, G.: Neural-network-based output-feedback control under Round-Robin scheduling protocols. IEEE Trans. Cybern. 49(6), 2348–2372 (2019)

    Article  Google Scholar 

  22. Han, D., Cheng, P., Chen, J., Shi, L.: An online sensor power schedule for remote state estimation with communication energy constraint. IEEE Trans. Autom. Control 59(7), 1942–1947 (2014)

    Article  MathSciNet  Google Scholar 

  23. Qi, Y., Cheng, P., Chen, J.: Optimal sensor data scheduling for remote estimation over a time-varying channel. IEEE Trans. Autom. Control 62(9), 4611–4617 (2017)

    Article  MathSciNet  Google Scholar 

  24. Shi, L., Cheng, P., Chen, J.: Sensor data scheduling for optimal state estimation with communication energy constraint. Automatica 47(8), 1693–1698 (2011)

    Article  MathSciNet  Google Scholar 

  25. Ren, Z., Cheng, P., Chen, J., Shi, L., Sun, Y.: Optimal periodic sensor schedule for steady-state estimation under average transmission energy constraint. IEEE Trans. Autom. Control 58(12), 3265–3271 (2013)

    Article  Google Scholar 

  26. Ren, Z., Cheng, P., Chen, J., Shi, L., Zhang, H.: Dynamic sensor transmission power scheduling for remote state estiation. Automatica 50(4), 1235–1242 (2014)

    Article  MathSciNet  Google Scholar 

  27. Ren, X., Wu, J., Johansson, K.H., Shi, G., Shi, L.: Infinite horizon optimal transmission power control for remote state estimation over fading channels. IEEE Trans. Autom. Control 63(1), 85–100 (2018)

    Article  MathSciNet  Google Scholar 

  28. Han, F., Wei, G., Ding, D., Song, Y.: Local condition-based consensus filtering with stochastic nonlinearities and multiple missing measurements. IEEE Trans. Autom. Control 62(9), 4784–4790 (2017)

    Article  MathSciNet  Google Scholar 

  29. Yuan, H., Xia, Y.: Secure filtering for stochastic non-linear systems under multiple missing measurements and deception attacks. IET Control Theory Appl. 12(4), 515–523 (2018)

    Article  MathSciNet  Google Scholar 

  30. Hu, J., Wang, Z., Liu, S., Hao, H.: A variance-constrained approach to recursive state estimation for time-varying complex networks with missing measurements. Automatica 64, 155–162 (2016)

    Article  MathSciNet  Google Scholar 

  31. Weiss, L., Infante, E.F.: Finite time stability under perturbing forces and on product spaces. IEEE Trans. Autom. Control 12(1), 54–59 (2003)

    Article  MathSciNet  Google Scholar 

  32. Amato, F., Ariola, M.: Finite-time control of linear systems subject to parametric uncertainties and disturbances. Automatica 37(9), 1459–1463 (2001)

    Article  Google Scholar 

  33. Ren, H., Zong, G., Karimi, H.: Asynchronous finite-time filtering of networked switched systems and its application: an event-driven method. IEEE Trans. Circuits Syst. I Reg. Pap. 66(1), 391–402 (2019)

    Article  MathSciNet  Google Scholar 

  34. Ren, H., Zong, G., Li, T.: Event-triggered finite-time control for networked switched linear systems with asynchronous switching. IEEE Trans. Syst. Man Cybern. Syst. 48(11), 1874–1884 (2018)

    Article  Google Scholar 

  35. Ren, H., Zong, G., Ahn, C.K.: Event-triggered finite-time resilient control for switched systems: an observer-based approach and its applications to a boost converter circuit system model. Nonlinear Dyn. 94(4), 2409–2421 (2018)

    Article  Google Scholar 

  36. Shen, H., Li, F., Wu, Z., Ju, H.: Finite-time asynchronous \(H_\infty \) filtering for discrete-time markov jump systems over a lossy network. Int. J. Robust Nonlinear Control 26(17), 3831–3848 (2016)

    Article  MathSciNet  Google Scholar 

  37. Zong, G., Qi, W., Karimi, H.R.: \(L_1\) control of positive Semi-Markov jump systems with state delay. IEEE Trans. Syst. Man Cybern. Syst. (2020). https://doi.org/10.1109/tsmc.2020.2980034

    Article  Google Scholar 

  38. Xiao, J., Cui, S., Luo, Z., Goldsmith, A.J.: Power scheduling of universal decentralized estimation in sensor networks. IEEE Trans. Signal Process. 2(54), 413–422 (2006)

    Article  Google Scholar 

  39. Zhang, D., Nguang, S.K., Yu, L.: Distributed control of large-scale networked control systems with communication constraints and topology switching. IEEE Trans. Syst. Man Cybern. Syst. 47(7), 1746–1757 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grants 61873169.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoliang Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wei, G., Ding, D. et al. Dwell-time-based energy scheduling and distributed control for large-scale nonlinear systems under Round-Robin protocol. Nonlinear Dyn 102, 1643–1656 (2020). https://doi.org/10.1007/s11071-020-06006-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06006-6

Keywords

Navigation