Skip to main content
Log in

Experimental analysis of nonlinear resonances in piezoelectric plates with geometric nonlinearities

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Piezoelectric devices with integrated actuation and sensing capabilities are often used for the development of electromechanical systems. The present paper addresses experimentally the nonlinear dynamics of a fully integrated circular piezoelectric thin structure, with piezoelectric patches used for actuation and other for sensing. A phase-locked loop control system is used to measure the resonant periodic response of the system under harmonic forcing, in both its stable and unstable parts. The single-mode response around a symmetric resonance as well as the coupled response around an asymmetric resonance, involving two companion modes in 1:1 internal resonance, is accurately measured. For the latter, a particular location of the patches and additional signal processing is proposed to spatially discriminate the response of each companion mode. In addition to a hardening behavior associated with geometric nonlinearities of the plate, a softening behavior predominant at low actuation amplitudes is observed, resulting from the material piezoelectric nonlinearities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Erturk, A., Inman, D.J.: Piezoelectric energy harvesting. John Wiley and Sons, New Jersey (2011)

    Google Scholar 

  2. Safaei, M., Sodano, H.A., Anton, S.R.: A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008–2018). Smart Mater. Struct. 28(11), 113001 (2019)

    Google Scholar 

  3. Trolier-McKinstry, S., Muralt, P.: Thin film piezoelectrics for MEMS. J. Electroceram. 12(1–2), 7–17 (2004)

    Google Scholar 

  4. Preumont, A.: Vibration control of active structures: an introduction. Springer, Berlin (2018)

    MATH  Google Scholar 

  5. Gripp, J.A.B., Rade, D.A.: Vibration and noise control using shunted piezoelectric transducers: a review. Mech. Syst. Signal Process. 112, 359–383 (2018)

    Google Scholar 

  6. Shivashankar, P., Gopalakrishnan, S.: Review on the use of piezoelectric materials for active vibration, noise, and flow control. Smart Mater. Struct. (2020)

  7. Karabalin, R.B., Matheny, M.H., Feng, X.L., Defaÿ, E., Le Rhun, G., Marcoux, C., Hentz, S., Andreucci, P., Roukes, M.L.: Piezoelectric nanoelectromechanical resonators based on aluminum nitride thin films. Appl. Phys. Lett. 95(10), 103111 (2009)

    Google Scholar 

  8. Dezest, D., Thomas, O., Mathieu, F., Mazenq, L., Soyer, C., Costecalde, J., Remiens, D., Deü, J.-F., Nicu, L.: Wafer-scale fabrication of self-actuated piezoelectric nanoelectromechanical resonators based on lead zirconate titanate (PZT). J. Micromech. Microeng. 25(3), 035002 (2015)

    Google Scholar 

  9. Thomas, O., Legrand, B., Fuinel, C.: Optimization of length and thickness of smart transduction layers on beam structures for control and M, NEMS applications. In ASME: Conference on Smart Materials, p. 2015. American Society of Mechanical Engineers Digital Collection, Adaptive Structures and Intelligent Systems (2015)

  10. Saya, D., Dezest, D., Welsh, A.J., Mathieu, F., Thomas, O., Leichle, T., Trolier-McKinstry, S., Nicu, L.: Piezoelectric nanoelectromechanical systems integrating microcontact printed PZT films. J. Micromech. Microeng. (2019)

  11. Ramlan, R., Brennan, M.J., Mace, B.R., Kovacic, I.: Potential benefits of a non-linear stiffness in an energy harvesting device. Nonlinear Dyn. 59(4), 545–558 (2010)

    MATH  Google Scholar 

  12. Daqaq, M.F., Masana, R., Erturk, A.,D Dane, Q.: On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. Appl. Mech. Rev. 66(4) (2014)

  13. Rhoads, J.F., Shaw, S.W., Turner, K.L.: Nonlinear dynamics and its applications in micro-and nanoresonators. Dyn. Syst Control Conf. 43352, 1509–1538 (2008)

    Google Scholar 

  14. Soltani, P., Kerschen, G.: The nonlinear piezoelectric tuned vibration absorber. Smart Mater. Struct. 24(7), 075015 (2015)

    Google Scholar 

  15. Evoy, S., Carr, D.W., Sekaric, L., Olkhovets, A., Parpia, J.M., Craighead, H.G.: Nanofabrication and electrostatic operation of single-crystal silicon paddle oscillators. J. Appl. Phys. 86(11), 6072–6077 (1999)

    Google Scholar 

  16. Kozinsky, I., Postma, H.W.C., Bargatin, I., Roukes, M.L.: Tuning nonlinearity, dynamic range, and frequency of nanomechanical resonators. Appl. Phys. Lett. 88(25), 253101 (2006)

    Google Scholar 

  17. Postma, H.W.C., Kozinsky, I., Husain, A., Roukes, M.L.: Dynamic range of nanotube-and nanowire-based electromechanical systems. Appl. Phys. Lett. 86(22), 223105 (2005)

    Google Scholar 

  18. Tiwari, S., Candler, R.N.: Using flexural MEMS to study and exploit nonlinearities: a review. J. Micromech. Microeng. 29(8), 083002 (2019)

    Google Scholar 

  19. Kenig, E., Cross, M.C., Villanueva, L.G., Karabalin, R.B., Matheny, M.H., Lifshitz, R., Roukes, M.L.: Optimal operating points of oscillators using nonlinear resonators. Phys. Rev. E 86(5), 056207 (2012)

    Google Scholar 

  20. Villanueva, L.G., Kenig, E., Karabalin, R.B., Matheny, M.H., Lifshitz, R., Cross, M.C., Roukes, M.L.: Surpassing fundamental limits of oscillators using nonlinear resonators. Phys. Rev. Lett. 110(17), 177208 (2013)

    Google Scholar 

  21. Antonio, D., Zanette, D.H., López, D.: Frequency stabilization in nonlinear micromechanical oscillators. Nat. Commun. 3(1), 1–6 (2012)

    Google Scholar 

  22. Shoshani, O., Heywood, D., Yang, Y., Kenny, T.W., Shaw, S.W.: Phase noise reduction in an MEMS oscillator using a nonlinearly enhanced synchronization domain. J. Microelectromech. Syst. 25(5), 870–876 (2016)

    Google Scholar 

  23. Cassella, C., Strachan, S., Shaw, S.W., Piazza, G.: Phase noise suppression through parametric filtering. Appl. Phys. Lett. 110(6), 063503 (2017)

    Google Scholar 

  24. Nayfeh, A.H., Mook, D.T.: Nonlinear oscillations. John Wiley and sons, New-York (1979)

    MATH  Google Scholar 

  25. Haddow, A.G., Barr, A.D.S., Mook, D.T.: Theoretical and experimental study of modal interaction in a two-degree-of-freedom structure. J. Sound Vib. 97(3), 451–473 (1984)

    MathSciNet  Google Scholar 

  26. Thomas, O., Touzé, C., Chaigne, A.: Non-linear vibrations of free-edge thin spherical shells: modal interaction rules and 1:1:2 internal resonance. Int. J. Solids Struct. 42(11), 3339–3373 (2005)

    MATH  Google Scholar 

  27. Touzé, C., Amabili, M.: Nonlinear normal modes for damped geometrically nonlinear systems: Application to reduced-order modelling of harmonically forced structures. J. Sound Vib. 298(4–5), 958–981 (2006)

    Google Scholar 

  28. Monteil, M., Touzé, C., Thomas, O., Benacchio, S.: Nonlinear forced vibrations of thin structures with tuned eigenfrequencies: the cases of 1:2:4 and 1:2:2 internal resonances. Nonlinear Dyn. 75(1), 175–200 (2014)

    MathSciNet  MATH  Google Scholar 

  29. Houri, S., Hatanaka, D., Asano, M., Ohta, R., Yamaguchi, H.: Limit cycles and bifurcations in a nonlinear MEMS resonator with a 1:3 internal resonance. Appl. Phys. Lett. 114(10), 103103 (2019)

    Google Scholar 

  30. Chen, C., Zanette, D.H., Czaplewski, D.A., Shaw, S., López, D.: Direct observation of coherent energy transfer in nonlinear micromechanical oscillators. Nat. Commun. 8, 15523 (2017)

    Google Scholar 

  31. Czaplewski, D.A., Strachan, S., Shoshani, O., Shaw, S.W., López, D.: Bifurcation diagram and dynamic response of a MEMS resonator with a 1:3 internal resonance. Appl. Phys. Lett. 114(25), 254104 (2019)

    Google Scholar 

  32. Taheri-Tehrani, P., Guerrieri, A., Defoort, M., Frangi, A., Horsley, D.A.: Mutual 3:1 subharmonic synchronization in a micromachined silicon disk resonator. Appl. Phys. Lett. 111(18), 183505 (2017)

    Google Scholar 

  33. Guillot, V., Givois, A., Colin, M., Thomas, O., Savadkoohi, A.T., Lamarque, C.-H.: Theoretical and experimental investigation of a 1:3 internal resonance in a beam with piezoelectric patches. J. Vib. Control (2020)

  34. Houri, S., Hatanaka, D., Asano, M., Yamaguchi, H.: Demonstration of multiple internal resonances in a microelectromechanical self-sustained oscillator. Phys. Rev. Appl. 13(1), 014049 (2020)

    Google Scholar 

  35. Hajjaj, A.Z., Jaber, N., Ilyas, S., Alfosail, F.K., Younis, M.I.: Linear and nonlinear dynamics of micro and nano-resonators: Review of recent advances. Int. J. Non-Linear Mech. (2019)

  36. Cao, D.X., Leadenham, S., Erturk, A.: Internal resonance for nonlinear vibration energy harvesting. Eur. Phys. J. Spec. Top. 224(14–15), 2867–2880 (2015)

    Google Scholar 

  37. Xiong, L., Tang, L., Mace, B.R.: A comprehensive study of 2:1 internal-resonance-based piezoelectric vibration energy harvesting. Nonlinear Dyn. 91(3), 1817–1834 (2018)

    Google Scholar 

  38. Ho, C.-H., Scott, R.A., Eisley, J.G.: Non-planar, non-linear oscillations of a beam-I. Forced motions. Int. J. Non-Linear Mech. 10(2), 113–127 (1975)

    MATH  Google Scholar 

  39. Ho, C.-H., Scott, R.A., Eisley, J.G.: Non-planar, non-linear oscillations of a beam II. Free motions. J. Sound Vib. 47(3), 333–339 (1976)

    MATH  Google Scholar 

  40. Thomas, O., Lazarus, A., Touzé, C.: A harmonic-based method for computing the stability of periodic oscillations of non-linear structural systems. In ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, volume 44137, pages 883–892. American Society of Mechanical Engineers Digital Collection (2010)

  41. Vincent, P., Descombin, A., Dagher, S., Seoudi, T., Lazarus, A., Thomas, O., Ayari, A., Purcell, S.T., Perisanu, S.: Nonlinear polarization coupling in freestanding nanowire/nanotube resonators. J. Appl. Phys. 125(4), 044302 (2019)

    Google Scholar 

  42. Chang, S.I., Bajaj, A.K., Krousgrill, C.M.: Non-linear vibrations and chaos in harmonically excited rectangular plates with one-to-one internal resonance. Nonlinear Dyn. 4(5), 433–460 (1993)

    Google Scholar 

  43. Touzé, C., Thomas, O., Chaigne, A.: Asymmetric non-linear forced vibrations of free-edge circular plates. part 1: Theory. J. Sound Vib. 258(4), 649–676 (2002)

    Google Scholar 

  44. Thomas, O., Touzé, C., Chaigne, A.: Asymmetric non-linear forced vibrations of free-edge circular plates, part 2: experiments. J. Sound Vib. 265(5), 1075–1101 (2003)

    Google Scholar 

  45. Thomas, O., Touzé, C., Luminais, É.: Non-linear vibrations of free-edge thin spherical shells: experiments on a 1:1:2 internal resonance. Nonlinear Dyn. 49(1–2), 259–284 (2007)

    MATH  Google Scholar 

  46. Camier, C., Touzé, C., Thomas, O.: Non-linear vibrations of imperfect free-edge circular plates and shells. Eur. J. Mech. A. Solids 28(3), 500–515 (2009)

    MATH  Google Scholar 

  47. Ismail, A.K., Burdess, J.S., Harris, A.J., McNeil, C.J., Hedley, J., Chang, S.C., Suarez, G.: The principle of a MEMS circular diaphragm mass sensor. J. Micromech. Microeng. 16, 1487–1493 (2006)

    Google Scholar 

  48. Ismail, A.K., Burdess, J.S., Harris, A.J., Suarez, G., Keegan, N., Spoors, J.A., Chang, S.C., McNeil, C.J., Hedley, J.: The fabrication, characterization and testing of a MEMS circular diaphragm mass sensor. J. Micromech. Microeng. 18(2), 025021 (2008)

    Google Scholar 

  49. Atalaya, J., Kinaret, J.M., Isacsson, A.: Nanomechanical mass measurement using nonlinear response of a graphene membrane. Europhys. Lett. 91(4), 48001 (2010)

    Google Scholar 

  50. Nathamgari, S.S.P., Dong, S., Medina, L., Moldovan, N., Rosenmann, D., Divan, R., Lopez, D., Lauhon, L.J., Espinosa, H.D.: Nonlinear mode coupling and one-to-one internal resonances in a monolayer WS\(_2\) nanoresonator. Nano Lett. 19(6), 4052–4059 (2019)

    Google Scholar 

  51. Manevitch, A.I., Manevitch, L.I.: Free oscillations in conservative and dissipative symmetric cubic two-degree-of-freedom systems with closed natural frequencies. Meccanica 38(3), 335–348 (2003)

    MathSciNet  MATH  Google Scholar 

  52. Givois, A., Tan, J.-J., Touzé, C., Thomas, O.: Backbone curves of coupled cubic oscillators in one-to-one internal resonance: bifurcation scenario, measurements and parameter identification. Meccanica 55, 481–503 (2020)

    MathSciNet  Google Scholar 

  53. Denis, V., Jossic, M., Giraud-Audine, C., Chomette, B., Renault, A., Thomas, O.: Identication of nonlinear modes using phase-locked-loop experimental continuation and normal form. Mech. Syst. Signal Process. 106, 430–452 (2018)

    Google Scholar 

  54. Jossic, M., Chomette, B., Denis, V., Thomas, O., Mamou-Mani, A., Roze, D.: Effects of internal resonances in the pitch glide of chinese gongs. J. Acoust. Soc. Am. 144(1), 431–442 (2018)

    Google Scholar 

  55. Taheri-Tehrani, P., Defoort, M., Horsley, D.A.: Operation of a high quality-factor gyroscope in electromechanical nonlinearities regime. J. Micromech. Microeng. 27(7), 075015 (2017)

    Google Scholar 

  56. Von Wagner, U., Hagedorn, P.: Piezo-beam systems subjected to weak electric field: experiments and modelling of non-linearities. J. Sound Vib. 256(5), 861–872 (2002)

    Google Scholar 

  57. Stanton, S.C., Erturk, A., Mann, B.P., Inman, D.J.: Nonlinear piezoelectricity in electroelastic energy harvesters: modeling and experimental identification. J. Appl. Phys. 108(7), 074903 (2010)

    Google Scholar 

  58. Guyomar, D., Aurelle, N., Eyraud, L.: Piezoelectric ceramics nonlinear behavior. Application to Langevin transducer. J. Phys. III 7(6), 1197–1208 (1997)

    Google Scholar 

  59. Leadenham, S., Erturk, A.: Unified nonlinear electroelastic dynamics of a bimorph piezoelectric cantilever for energy harvesting, sensing, and actuation. Nonlinear Dyn. 79(3), 1727–1743 (2015)

    Google Scholar 

  60. Park, M., Ansari, A.: Formation, evolution, and tuning of frequency combs in microelectromechanical resonators. J. Microelectromech. Syst. 28(3), 429–431 (2019)

    Google Scholar 

  61. Thomas, O., Mathieu, F., Mansfield, W., Huang, C., Trolier-McKinstry, S., Nicu, L.: Efficient parametric amplification in micro-resonators with integrated piezoelectric actuation and sensing capabilities. Appl. Phys. Lett. 102(16), 163504 (2013)

    Google Scholar 

  62. Lossouarn, B., Deü, J.-F., Aucejo, M., Cunefare, K.A.: Multimodal vibration damping of a plate by piezoelectric coupling to its analogous electrical network. Smart Mater. Struct. 25(11), 115042 (2016)

    Google Scholar 

  63. Lazarus, A., Thomas, O., Deü, J.-F.: Finite element reduced order models for nonlinear vibrations of piezoelectric layered beams with applications to NEMS. Finite Elem. Anal. Des. 49(1), 35–51 (2012)

    MathSciNet  Google Scholar 

  64. Givois, A.: Analyse numérique et expérimentale de vibrations non-linéaires de structures élastiques et piézoélectriques. Modèles réduits et interactions modales (Numerical and experimental analysis of nonlinear vibrations of elastic and piezoelectric structures. Reduced-order models and modal interactions). PhD thesis, HESAM Université, Paris, (in French) (2019)

  65. Touzé, C., Thomas, O., Chaigne, A.: Hardening/softening behaviour in non-linear oscillations of structural systems using non-linear normal modes. J. Sound Vib. 273(1–2), 77–101 (2004)

    Google Scholar 

  66. Thomas, O., Deü, J.-F., Ducarne, J.: Vibration of an elastic structure with shunted piezoelectric patches: efficient finite-element formulation and electromechanical coupling coefficients. Int. J. Numer. Methods Eng. 80(2), 235–268 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Frédéric Guillerm is thanked for his tremendous skills in fitting and gluing piezoelectric patches.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Givois.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Givois, A., Giraud-Audine, C., Deü, JF. et al. Experimental analysis of nonlinear resonances in piezoelectric plates with geometric nonlinearities. Nonlinear Dyn 102, 1451–1462 (2020). https://doi.org/10.1007/s11071-020-05997-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05997-6

Keywords

Navigation