Skip to main content
Log in

Hopf bifurcations on invariant manifolds of a modified Fitzhugh–Nagumo model

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The dynamical features of a modified Fitzhugh–Nagumo (FHN) nerve model are addressed. The model considered accounts for a relaxation time, induced by diffusion and finite propagation velocities, resulting in a hyperbolic system. Bifurcation analysis of the local kinetic system with the relaxation constant as the principal bifurcation parameter reveals a threshold of the relaxation constant beyond which a supercritical Hopf bifurcation occurs. It is shown that the frequency of the ensuing cycles depends on the relaxation time. The existence of Hopf bifurcations on invariant center manifolds is established using the projection method. Analytical formulas for the critical value of the relaxation constant and the first Lyapunov coefficient are derived; results are confirmed via numerical simulations. The addition of external current, at small values of the relaxation constant, produces excitable behavior consistent with the classical FHN model such as periodic firing, bistability, bursting and canard explosions. At higher values of this constant, chaotic motion and other new dynamical objects such as period-two, -three and -four orbits are observed numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Marsden, J.E., McCracken, M.: The Hopf Bifurcation and Its Applications, vol. 19. Springer, Berlin (2012)

    MATH  Google Scholar 

  2. Hassard, B.D., Hassard, B.D., Kazarinoff, N.D., Wan, Y.-H., Wan, Y. W.: Theory and Applications of Hopf Bifurcation, vol. 41. CUP Archive (1981)

  3. Carr, J.: Applications of Centre Manifold Theory, vol. 35. Springer, Berlin (2012)

    MATH  Google Scholar 

  4. Kelley, A.: Stability of the center-stable manifold. J. Math. Anal. Appl. 18(2), 336–344 (1967)

  5. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, vol. 2. Springer, Berlin (2003)

    MATH  Google Scholar 

  6. FitzHugh, R.: Mathematical models of threshold phenomena in the nerve membrane. Bull. Math. Biophys. 17, 257–278 (1955)

  7. Izhikevich, E.M.: Neural excitability, spiking and bursting. Int. J. Bifurc. Chaos 10, 1171–1266 (2000)

  8. Llinás, R.R.: The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242, 1654–1664 (1988)

  9. Izhikevich, E.M.: Resonate-and-fire neurons. Neural Netw. 14, 883–894 (2001)

  10. Börgers, C.: An Introduction to Modeling Neuronal Dynamics, vol. 66. Springer, Berlin (2017)

    Book  Google Scholar 

  11. Wechselberger, M.: Canards. Scholarpedia 2, 1356 (2007)

  12. Feingold, M., Gonzalez, D.L., Piro, O., Viturro, H.: Phase locking, period doubling, and chaotic phenomena in externally driven excitable systems. Phys. Rev. A 37, 4060 (1988)

  13. Horikawa, Y.: Period-doubling bifurcations and chaos in the decremental propagation of a spike train in excitable media. Phys. Rev. E 50, 1708 (1994)

  14. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. Bull. Math. Biol. 52, 25–71 (1990)

  15. Maugin, G.A., Engelbrecht, J.: A thermodynamical viewpoint on nerve pulse dynamics. J. Non-Equil. Thermodyn. 19, 9–23 (1994)

  16. Cattaneo, C.: Sur une forme de l’equation de la chaleur eliminant la paradoxe d’une propagation instantantée. Comptes Rendus 247, 431–433 (1958)

  17. Compte, A., Metzler, R.: The generalized Cattaneo equation for the description of anomalous transport processes. J. Phys. A Math. Gen. 21, 7277 (1997)

  18. Lewandowska, K.D., Kosztołowicz, T.: Application of generalized cattaneo equation to model subdiffusion impedance. Acta Phys. Polon. B 39, 1211–1220 (2008)

    Google Scholar 

  19. Likus, W., Vsevolod A Vladimirov, V. A. Solitary waves in the model of active media, taking into account effects of relaxation. Rep. Math. Phys. 75, 213–230 (2015)

  20. Gawlik, A., Vladimirov, V., Skurativskyi, S.: Existence of the solitary wave solutions supported by the hyperbolic modification of the Fitzhugh–Nagumo system. arXiv preprint arXiv:1905.02087 (2019)

  21. Gawlik, A., Vladimirov, V., Skurativskyi, S. Solitary wave dynamics governed by the modified Fitzhugh–Nagumo equation. arXiv preprint arXiv:1906.01865 (2019)

  22. Tabi, C.B., Etémé, A.S., Kofané, T.C.: Unstable cardiac multi-spiral waves in a Fitzhugh–Nagumo soliton model under magnetic flow effect. Nonlinear Dyn. 100, 3799–3814 (2020)

    Article  Google Scholar 

  23. Takembo, C.N., Mvogo, A., Fouda, H.P.E., Kofané, T.C.: Effect of electromagnetic radiation on the dynamics of spatiotemporal patterns in memristor-based neuronal network. Nonlinear Dyn. 95, 1067–1078 (2019)

    Article  Google Scholar 

  24. Rostami, Z., Jafari, S.: Defects formation and spiral waves in a network of neurons in presence of electromagnetic induction. Cogn. Neurodyn. 12, 235–254 (2018)

    Article  Google Scholar 

  25. Xu, Y., Guo, Y., Ren, G., Ma, J.: Dynamics and stochastic resonance in a thermosensitive neuron. Appl. Math. Comput. 385, 125427 (2020)

    MathSciNet  Google Scholar 

  26. Guo, Y., Zhu, Z., Wang, C., Ren, G.: Coupling synchronization between photoelectric neurons by using memristive synapse. Optik 218, 164993 (2020)

    Article  Google Scholar 

  27. Gopalsamy, K., Leung, I.: Delay induced periodicity in a neural netlet of excitation and inhibition. Phys. D 89, 395–426 (1996)

    Article  MathSciNet  Google Scholar 

  28. Plant, R.E.: A Fitzhugh differential-difference equation modeling recurrent neural feedback. SIAM J. Appl. Math. 40(1), 150–162 (1981)

    Article  MathSciNet  Google Scholar 

  29. Olien, L., Bélair, J.: Bifurcations, stability, and monotonicity properties of a delayed neural network model. Phys. D 102, 349–363 (1997)

    Article  MathSciNet  Google Scholar 

  30. Zhen, B., Xu, J.: Fold-Hopf bifurcation analysis for a coupled Fitzhugh–Nagumo neural system with time delay. Int. J. Bifurc. Chaos 20(12), 3919–3934 (2010)

    Article  MathSciNet  Google Scholar 

  31. Din, Q., Khaliq, S.: Flip and Hopf bifurcations of discrete-time Fitzhugh–Nagumo model. Open J. Math. Sci. 2, 209–220 (2018)

    Article  Google Scholar 

  32. Rocsoreanu, C., Georgescu, A., Giurgiteanu, N.: The FitzHugh–Nagumo Model: Bifurcation and Dynamics, vol. 10. Springer, Berlin (2012)

    MATH  Google Scholar 

  33. Kuznetsov, Y. A.: Elements of Applied Bifurcation Theory, vol. 112. Springer, Berlin (2013)

    Google Scholar 

  34. El Kahoui, M., Weber, A.: Deciding Hopf bifurcations by quantifier elimination in a software-component architecture. J. Symb. Comput. 30, 161–179 (2000)

    Article  MathSciNet  Google Scholar 

  35. Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: Matcont: a Matlab package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Soft. (TOMS) 29, 141–164 (2003)

    Article  MathSciNet  Google Scholar 

  36. Hoppensteadt, F.C., Izhikevich, E.M.: Weakly Connected Neural Networks, vol. 126. Springer, Berlin (2012)

    Google Scholar 

  37. Davison, E.N., Aminzare, Z., Dey, B., Leonard, N.E.: Mixed mode oscillations and phase locking in coupled Fitzhugh–Nagumo model neurons. Chaos 29, 033105 (2019)

  38. Saha, P., Strogatz, S.H.: The birth of period three. Math. Mag. 68, 42–47 (1995)

    Article  Google Scholar 

  39. Bechhoefer, J.: The birth of period three, revisited. Math. Mag. 69, 115–118 (1996)

    Article  MathSciNet  Google Scholar 

  40. Insperger, T.: On the approximation of delayed systems by Taylor series expansion. J. Comput. Nonlinear Dyn. 10, 024503 (2015)

    Article  Google Scholar 

  41. Swadlow, H.A., Waxman, S.G.: Axonal conduction delays. Scholarpedia 7, 1451 (2012)

    Article  Google Scholar 

  42. Hutt, A.: Generalization of the reaction–diffusion, Swift–Hohenberg, and Kuramoto–Sivashinsky equations and effects of finite propagation speeds. Phys. Rev. E 75, 026214 (2007)

    Article  MathSciNet  Google Scholar 

  43. Glass, L., Mackey, M.C.: From Clocks to Chaos: The Rhythms of Life. Princeton University Press, Princeton (1988)

    MATH  Google Scholar 

  44. Desmaisons, D., Vincent, J.-D., Lledo, P.-M.: Control of action potential timing by intrinsic subthreshold oscillations in olfactory bulb output neurons. J. Neurosci. 19, 10727–10737 (1999)

    Article  Google Scholar 

  45. V-Ghaffari, B., Kouhnavard, M., Kitajima, T.: Biophysical properties of subthreshold resonance oscillations and subthreshold membrane oscillations in neurons. J. Biol. Syst. 24, 561–575 (2016)

  46. Asl, M.M., Valizadeh, A., Tass, P.A.: Dendritic and axonal propagation delays determine emergent structures of neuronal networks with plastic synapses. Sci. Rep. 7, 39682 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The work by CBT is supported by the Botswana International University of Science and Technology under the Grant DVC/RDI/2/1/16I (25). CBT thanks the Kavli Institute for Theoretical Physics (KITP), University of California Santa Barbara (USA), where this work was supported in part by the National Science Foundation Grant No. NSF PHY-1748958, NIH Grant No. R25GM067110, and the Gordon and Betty Moore Foundation Grant No. 2919.01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conrad Bertrand Tabi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tah, F.A., Tabi, C.B. & Kofané, T.C. Hopf bifurcations on invariant manifolds of a modified Fitzhugh–Nagumo model. Nonlinear Dyn 102, 311–327 (2020). https://doi.org/10.1007/s11071-020-05976-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05976-x

Keywords

Navigation