Skip to main content
Log in

A framework for parametric reduction in large-scale nonlinear dynamical systems

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This manuscript presents a general parametric model order reduction (pMOR) framework for nonlinear dynamical systems. At first, a family of local nonlinear reduced order models (ROMs) is generated for different parametric space vectors using the nonlinear moment matching (NLMM) scheme along-with the discrete empirical interpolation method (DEIM). Then, the nonlinear reduced order model for any new parameter is obtained by interpolating the neighbouring reduced order models after projecting them onto a universal subspace. The advantage of such a scheme is that the parametric dependency is maintained in the reduced nonlinear models. Finally, we substantiate our observations by a suite of numerical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Antoulas, A.C.: Approximation of large-scale dynamical systems, Siam Philadelphia, vol. 6 (2005)

  2. Freund, R.W.: Model reduction methods based on Krylov subspaces. Acta Numerica 12, 267–319 (2003)

    Article  MathSciNet  Google Scholar 

  3. Beattie, C.A., Gugercin, S.: Model reduction by rational interpolation. In: Benner, P., Cohen, A., Ohlberger, M., Willcox, K. (eds.) Model Reduction and Algorithms: Theory and Applications, Comput. Sci. Eng. vol. 15, pp. 297–334 (2014)

  4. Moore, B.: Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE Trans. Autom. Control 26(1), 17–32 (1981)

    Article  MathSciNet  Google Scholar 

  5. Willcox, K., Peraire, J.: Balanced model reduction via the proper orthogonal decomposition. AIAA J. 40(11), 2323–2330 (2002)

    Article  Google Scholar 

  6. Varga, A.: Enhanced modal approach for model reduction. Math Model Syst. 1, 91–105 (1995)

    MathSciNet  MATH  Google Scholar 

  7. Craig Jr., R., Bampton, M.C.: Coupling of Substructures for dynamic analysis. AIAA 6(7), 1313–1319 (1968)

    Article  Google Scholar 

  8. Rewienski, M., White, J.: A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 22(2), 155–170 (2003)

    Article  Google Scholar 

  9. Rewienski,  W.J.: Improving trajectory piecewise-linear approach to nonlinear model order reduction for micromachined devices using an aggregated projection basis (2002)

  10. Astrid, P., Weiland, S., Willcox, K., Backx, T.: Missing point estimation in models described by proper orthogonal decomposition. IEEE Trans. Autom. Control 53(10), 2237–2251 (2008)

    Article  MathSciNet  Google Scholar 

  11. Lall, S., Marsden, J.E., Glavaški, S.: A subspace approach to balanced truncation for model reduction of nonlinear control systems. Int. J. Robust Nonlinear Control Affil. J. 12(6), 519–535 (2002)

    Article  MathSciNet  Google Scholar 

  12. Baur, U., Beattie, C.A., Benner, P., Gugercin, S.: Interpolatory projection methods for parameterized model reduction. Chemnitz Scientific Computing Preprints, 09-08 (2009)

  13. Bazaz, M.A., Nabi, M., Janardhanan, S.: A review of parametric model order reduction techniques. IEEE International Conference on Signal Processing, Control and Computation (2012)

  14. Benner, Peter, Gugercin, Serkan, Willcox, Karen: A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 57(4), 483–531 (2015)

    Article  MathSciNet  Google Scholar 

  15. Baur, U., Benner, P., Haasdonk, B., Himpe, C., Martini, I., Ohlberger, M.: Comparison of methods for parametric model order reduction of instationary problems. Max Planck Institute Magdeburg,  Preprint, MPIMD/15-01 (2015)

  16. Panzer, H., Mohring, J., Eid, R., Lohmann, B.: Parametric model order reduction by matrix interpolation. Automatisierungtechnik 14(5), 475–484 (2010)

    Google Scholar 

  17. Abid Bazaz, M., Nahvi, S.A., Nabi, M., Janardhanan, S., Rehman, M.U.: Adaptive parameter space sampling in Matrix Interpolatory pMOR. IEEE-RDCAPE, Noida, U.P, India, pp. 83–89 (2015)

  18. Varona, M.C., Nabi, M., Lohmann, B.: Automatic adaptive sampling in parametric model order reduction by matrix interpolation. In: 2017 IEEE International Conference on Advanced Inelligent Mechatronics (AIM), Sheraton Arabella Park Hotel, Munich, Germany, July 3-7 (2017)

  19. Gosea, Ion Victor, Antoulas, Athanasios C.: Data-driven model order reduction of quadratic-bilinear systems. Numer. Linear Algebra Appl. 25(6), e2200 (2018)

    Article  MathSciNet  Google Scholar 

  20. Antoulas, A.C., Gosea, I.V., Heinkenschloss, M.: On the Loewner framework for model reduction of burgers’ equation. In: Active Flow and Combustion Control 2018, pp. 255–270 (2019)

  21. Ionita, A.C., Antoulas, A.C.: Data-Driven Parametrized Model Reduction in the Loewner Framework. SIAM J. Sci. Comput. 36, A984–A1007 (2014)

    Article  MathSciNet  Google Scholar 

  22. Feng, L., Benner, P.: A new error estimator for reduced-order modeling of linear parametric systems. IEEE Trans. Microw. Theory Tech. 67(12), 4848–4859 (2019)

    Article  Google Scholar 

  23. Yue, Y., Feng, L., Benner, P.: Reduced-order modelling of parametric systems via interpolation of heterogeneous surrogates. Adv. Model. Simul. Eng. Sci. 6, 10 (2019)

  24. Rafiq, D., Bazaz, M.A.: A comprehensive scheme for reduction of nonlinear dynamical systems. Int. J. Dyn. Control 19, 589–598 (2019)

    Google Scholar 

  25. Rafiq, D., Bazaz, M.A.: A comprehensive scheme for fast simulation of Burgers’ equation. In: 2019 Sixth Indian Control Conference (ICC), Hyderabad, India, pp. 397–402 (2019)

  26. Rafiq, D., Bazaz, M.A.: Model order reduction of non-linear transmission lines using non-linear moment matching. In: 2019 International Conference on Computing, Power and Communication Technologies (GUCON), NCR New Delhi, India, pp. 394–399 (2019)

  27. Astolfi, A.: A new look at model reduction by moment matching for linear systems. In: 2007 46th IEEE Conference on Decision and Control, pp. 4361–4366 (2007)

  28. Astolfi, A.: Model reduction by moment matching for nonlinear systems. In: Proceedings of 7th IEEE Conference on Decision and Control (CDC), pp. 4873–4878 (2008)

  29. Chaturantabut, S., Sorensen, D.C.: Nonlinear model order reduction via discrete empirical interpolation. SIAM, J. Sci. Comput 32(5), 2737–2764 (2010)

    Article  MathSciNet  Google Scholar 

  30. Huang, J.: Nonlinear output regulation: theory and applications. Siam, vol. 8 (2004)

  31. Astolfi, A.: Model reduction by moment matching for linear and nonlinear systems. IEEE Trans. Autom. Control 55(10), 2321–2336 (2010)

    Article  MathSciNet  Google Scholar 

  32. Astolfi.: Model reduction by moment matching, steady-state response and projections. In: 49th IEEE Conference on Decision and Control (CDC). IEEE, pp. 5344–5349 (2010)

  33. Ionescu, T.C., Astolfi, A.: Families of reduced order models that achieve nonlinear moment matching. In : American Control Conference. IEEE, pp. 5518–5523 (2013)

  34. Ionescu, T.C., Astolfi, A.: Nonlinear moment matching-based model order reduction. IEEE Trans. Autom. Control 61(10), 2837–2847 (2016)

    Article  MathSciNet  Google Scholar 

  35. Scarciotti, A.: Model reduction of neutral linear and nonlinear time-invariant time-delay systems with discrete and distributed delays. IEEE Trans. Autom. Control 61(6), 1438–1451 (2016)

    Article  MathSciNet  Google Scholar 

  36. Scarciotti, A.G.: Data-driven model reduction by moment matching for linear and nonlinear systems. Automatica 79, 340–351 (2017)

    Article  MathSciNet  Google Scholar 

  37. Varona, M.C., Gebhart, R., Suk, J., Lohmann, B.: Practical simulation free model order reduction by nonlinear moment matching. arXiv:1901.10750

  38. Varona, M.C., Schneucker, N., Lohmann, B.: Nonlinear moment matching for the simulation-free reduction of structural systems. In: 8th IFAC Symposium on Mechatronics Systems and the 11th IFAC Symposium on Nonlinear Cotrol System (NOLCOS) (2019) arXiv:1903.12303

  39. Isidori, A.: Nonlinear control systems. Springer Science & Business Media (2013)

  40. Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations. CR Math. 339, 667–672 (2004)

    MathSciNet  MATH  Google Scholar 

  41. Bateman, H.: Some recent researches on the motion of fluids. Mon. Weather Rev. 43(4), 163–170 (1915)

    Article  Google Scholar 

  42. Burgers, J.M.: Mathematical examples illustrating relations occurring in the theory of turbulent fluid motion. In: Selected Papers of JM Burgers. Springer, pp. 281–334 (1995)

  43. Burgers.: Hydrodynamics application of a model system to illustrate some points of the statistical theory of free turbulence. In: Selected Papers of JM Burgers. Springer, pp. 390–400 (1995)

  44. Ames, W.F.: Nonlinear partial differential equations in engineering. Academic Press, vol. 18 (1965)

  45. Fletcher, C.A.J.: Generating exact solutions for the two-dimensional Burgers equation. Int. J. Numer. Meth. Fluids 3, 213–216 (1983)

    Article  Google Scholar 

  46. Bahadir, A.R.: A fully implicit finite difference scheme for two-dimensional Burgers equation. Appl. Math. Comput. 137, 131–137 (2003)

    MathSciNet  MATH  Google Scholar 

  47. Nathaniel, C., Infante, E.F.: Bifurcation and Stability for a nonlinear parabolic partial differential equation. Bull. Am. Math. Soc 80, 49–52 (1974)

  48. Constantin, P.: Integral Manifolds and Inertial Manifolds for Disspative Partial Equations. Springer, New York (1989)

    Book  Google Scholar 

  49. Sakthivel, R., Chun, C.: New soliton solutions of Chaffee-Infante equations using the exp-function method. Z. Naturforsch. 65a, 197–202 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The Doctoral fellowship of Author 1 from Ministry of Human Resource Development (MHRD), New Delhi, India, via Grant No. (2017PHAELE006) is duly acknowledged. Authors would like to thank Maria Cruz Varona for sharing NLMM code and for fruitful discussions. Authors would also like to thank the anonymous reviewers for their expert advice in improving the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danish Rafiq.

Ethics declarations

Conflicts of interest

The authors declare that there is no potential conflicts of interest with respect to publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 146 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafiq, D., Bazaz, M.A. A framework for parametric reduction in large-scale nonlinear dynamical systems. Nonlinear Dyn 102, 1897–1908 (2020). https://doi.org/10.1007/s11071-020-05970-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05970-3

Navigation