Skip to main content
Log in

Study on fuel consumption in the Kerner–Klenov–Wolf three-phase cellular automaton traffic flow model

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Based on the Kerner–Klenov–Wolf three-phase cellular automaton traffic model, we study fuel consumption of vehicles on one-way lanes under open boundary conditions. The difference in the appearance of the phase diagram is found to be related to the length of the vehicle. Phase diagram is divided into free flow, congested phase I, congested phase II and maximum current (MC) phase for the 15 cells of vehicle length and lacks the maximum current (MC) phase for 5 cells of vehicle length. By analysis of the cross-correlation between local density and flow and the spatial–temporal patterns, synchronized flow (SF) on the area upstream of the road is determined. The numerical computations for fuel consumption on free flow, congested phase I, synchronous flow (SF) and maximum current (MC) are carried out. The results indicate that the injection rate and the removal rate have great impacts on fuel consumption in the open boundary traffic system. The maximum current (MC) phase and congested phase I maximize fuel consumption. The fuel consumption of synchronized flow (SF) exceeds that of the free flow, but lower than that of the congested phase I and the maximum current (MC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wolfram, S.: Theory and Applications of Cellular Automata. World Scientific, Singapore (1986)

    MATH  Google Scholar 

  2. Chowdhury, D., Santen, L., Schadschneider, A., Schreckenberg, M.: Statistical physics of vehicular traffic and some related systems. Phys. Rep. 329, 199–329 (2000)

    Article  MathSciNet  Google Scholar 

  3. Helbing, D.: Traffic and related self-driven many-particle systems. Rev. Mod. Phys. 73, 1067–1141 (2001)

    Article  MathSciNet  Google Scholar 

  4. Maerivoet, S., De Moor, B.: Cellular automata models of road traffic. Phys. Rep. 419, 1–64 (2005)

    Article  MathSciNet  Google Scholar 

  5. Kerner, B.S.: Physics of automated driving in framework of three-phase traffic theory. Phys. Rev. E 97, 042303–042317 (2018)

    Article  Google Scholar 

  6. Teoh, H.K., Yong, E.H.: Renormalization-group study of the Nagel-Schreckenberg model. Phys. Rev. E 97, 032314–032318 (2018)

    Article  MathSciNet  Google Scholar 

  7. Toledo, B.A., Cerda, E., Rogan, J., Munoz, V., Tenreiro, C., Zarama, R., Valdivia, J.A.: Universal and nonuniversal features in a model of city traffic. Phys. Rev. E 75, 026108–026110 (2007)

    Article  Google Scholar 

  8. Nagatani, T.: The physics of traffic jams. Rep. Prog. Phys. 65, 1331–1386 (2002)

    Article  Google Scholar 

  9. Jiang, R., Wu, Q.S.: Open boundaries in a cellular automata model for synchronized flow: effects of nonmonotonicity. Phys. Rev. E 68, 026135–026138 (2003)

    Article  Google Scholar 

  10. Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J. Phys. I 2, 2221–2229 (1992)

    Google Scholar 

  11. Fukui, M., Ishibashi, Y.: Traffic flow in 1D cellular automaton model including cars moving with high speed. J. Phys. Soc. Jpn. 65, 1868–1870 (1996)

    Article  Google Scholar 

  12. Zhao, H.T., Lin, L., Xu, C.P., Li, Z.X., Zhao, X.: Cellular automata model under Kerner’s framework of three-phase traffic theory considering the effect of forward-backward vehicles in internet of vehicles. Phys. A 553, 1–22 (2020)

    Article  Google Scholar 

  13. Kerner, B.S., Rehborn, H.: Experimental properties of phase transitions in traffic flow. Phys. Rev. Lett. 79, 4030–4033 (1997)

    Article  Google Scholar 

  14. Kerner, B.S., Rehborn, H.: Experimental properties of complexity in traffic flow. Phys. Rev. E 53, R4275–R4278 (1996)

    Article  Google Scholar 

  15. Kerner, B.S.: Statistical Physics of Synchronized Traffic Flow: spatiotemporal Competition between S → F and S → J Instabilities. Phys. Rev. E 1903, 1–23 (2019)

    Google Scholar 

  16. U.S. Energy consumption by the transportation sector. Bureau of Transportation Statistics 2018; https://www.bts.gov/content/us-energy-consumption-transportation-sector

  17. Kaza, N.: Urban form and transportation energy consumption. Energy Policy 136, 111049 (2020)

    Article  Google Scholar 

  18. Hao, J., He, D., Wu, Y., et al.: A study of the emission and concentration distribution of vehicular pollutants in the urban area of Beijing. Atmos. Environ. 34, 453–465 (2000)

    Article  Google Scholar 

  19. Song, Y., Xie, S., Zhang, Y., et al.: Source apportionment of PM2. 5 in Beijing using principal component analysis/absolute principal component scores and UNMIX. Sci. Total Environ. 372, 278–286 (2006)

    Article  Google Scholar 

  20. Feng, J., Chan, C.K., Fang, M., et al.: Characteristics of organic matter in PM2. 5 in Shanghai. Chemosphere 64, 1393–1400 (2006)

    Article  Google Scholar 

  21. Brook, R.D., Franklin, B., Cascio, W., et al.: Air pollution and cardiovascular disease: a statement for healthcare professionals from the expert panel on population and prevention science of the American heart association. Circulation 109, 2655–2671 (2004)

    Article  Google Scholar 

  22. Gao, K., Jiang, R., Hu, S.X., Wang, B.H., Wu, Q.S.: Cellular-automaton model with velocity adaptation in the framework of Kerner’s three-phase traffic theory. Phys. Rev. E 76, 026105–026107 (2007)

    Article  Google Scholar 

  23. Zhu, H.B., Gao, J.B.: Fractal behavior in the headway fluctuation simulated by the NaSch model. Phys. A 398, 187–193 (2014)

    Article  MathSciNet  Google Scholar 

  24. Wu, J.J., Sun, H.J., Gao, Z.Y.: Long-range correlations of density fluctuations in the Kerner–Klenov–Wolf cellular automaton three-phase traffic flow model. Phys. Rev. E 78, 036103–036108 (2008)

    Article  Google Scholar 

  25. Wu, J.J., Xu, S.Y., Sun, H.J.: Detrended fluctuation analysis of time series in mixed traffic flow. Acta Phys. Sinica 60, 019502–019508 (2011)

    Google Scholar 

  26. Xu, N., Shang, P., Kamae, S.: Modeling traffic flow correlation using DFA and DCCA. Nonlinear Dyn. 61, 207–216 (2010)

    Article  Google Scholar 

  27. Jia, L.S., Teng, W.Z., Pan, W., Xue, Y.: Correlation analysis of synchronization flow at a traffic bottleneck. Nonlinear Dyn. 78, 1801–1809 (2014)

    Article  Google Scholar 

  28. Xue, Y., Jia, L.S., Teng, W.Z., Lu, W.Z.: Long-range correlations in vehicular traffic flow studied in the framework of Kerner’s three-phase theory based on rescaled range analysis. Commun. Nonlinear Sci. Numer. Simulat. 22, 285–296 (2015)

    Article  Google Scholar 

  29. Ahn, K.: Microscopic fuel consumption and emission modeling (Dissertation for Master Degree) Virginia Polytechnic Institute and State University, Blacksburg, pp. 26–72 (1998)

  30. Ahn, K., Rakha, H., Trani, A., Van Aerde, M.: Estimating vehicle fuel consumption and emissions based on instantaneous speed and acceleration levels. J. Transp. Eng. 128, 182–190 (2002)

    Article  Google Scholar 

  31. Madani, A., Moussa, N.: Simulation of fuel consumption and engine pollutant in cellular automaton. J. Theor. Appl. Inform. Technol. 35, (2012)

  32. Tang, T.Q., Wang, T., Chen, L., Shang, H.Y.: Impacts of energy consumption and emissions on the trip cost without late arrival at the equilibrium state. Phys. A 479, 341–349 (2017)

    Article  Google Scholar 

  33. Tang, T.Q., Yi, Z.Y., Lin, Q.F.: Effects of signal light on the fuel consumption and emissions under car-following model. Phys. A 469, 200–205 (2017)

    Article  Google Scholar 

  34. Treiber, M., Kesting, A., Thiemann, C.: How much does traffic congestion increase fuel consumption and emissions? Applying a fuel consumption model to the NGSIM trajectory data. In 87th Annual Meeting of the Transportation Research Board, Washington, DC 71, 1–18 (2008)

  35. Treiber, M., Kesting, A.: Traffic Flow Dynamics: Data, Models and Simulation. Springer, Berlin (2013)

    Book  Google Scholar 

  36. Pérez-Sansalvador, J.C., Lakouari, N., Garcia-Diaz, J., Pomares Hernández, S.E.: The effect of speed humps on instantaneous traffic emissions. Appl. Sci. 10, 1592 (2020)

    Article  Google Scholar 

  37. Lakouari, N., Oubram, O., Bassam, A., Hernandez, S.E.P., Ez-Zahraouy, H.: Modeling and simulation of CO2 emissions in roundabout intersection. J. Comput. Sci. 40, 101072 (2019)

    Article  Google Scholar 

  38. Wang, X., Xue, Y., Cen, B.L., He, H.D.: Study on pollutant emissions of mixed traffic flow in cellular automaton. Phys. A 537, 1–16 (2020)

    Google Scholar 

  39. Kerner, B.S., Klenov, S.L., Wolf, D.E.: Cellular automata approach to three-phase traffic theory. J. Phys. A: Math. Gen. 35, 9971–10013 (2002)

    Article  MathSciNet  Google Scholar 

  40. Pan, W., Xue, Y., He, H.D., Lu, W.Z.: Impacts of traffic congestion on fuel rate, dissipation and particle emission in a single lane based on Nasch Model. Phys. A 503, 154–162 (2018)

    Article  Google Scholar 

  41. Yang, M.L., Liu, Y.G., You, Z.S.: Investigation of fuel consumption and pollution emissions in cellular automata. Chin. J. Phys. 47, 589–597 (2009)

    Google Scholar 

  42. Madani, A., Moussa, N.: Simulation of fuel consumption and engine pollutant in cellular automaton. J. Theor. Appl. Inform. Technol. 35, 250–257 (2012)

    Google Scholar 

  43. Neubert, L., Santen, L., Schadschneider, A., Schreckenberg, M.: Single-vehicle data of highway traffic: a statistical analysis. Phys. Rev. E 60, 6480–6490 (1999)

    Article  Google Scholar 

  44. Cheybani, S., Kertész, J., Schreckenberg, M.: Stochastic boundary conditions in the deterministic Nagel-Schreckenberg traffic model. Phys. Rev. E 63, 016108–016109 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

The project supported by the National Natural Science Foundation of China (Grant Nos. 11262003 & 11672176), the Natural Science Foundation of Guangxi, China (Grant No. 2018GXNSFAA138205), Guangxi Higher Education Undergraduate Teaching Reform Project (2019JGZ102) and the high-performance computing platform of Guangxi University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Xue.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Y., Wang, X., Cen, Bl. et al. Study on fuel consumption in the Kerner–Klenov–Wolf three-phase cellular automaton traffic flow model. Nonlinear Dyn 102, 393–402 (2020). https://doi.org/10.1007/s11071-020-05947-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05947-2

Keywords

Navigation