Skip to main content
Log in

On fractional difference logistic maps: Dynamic analysis and synchronous control

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates a logistic map derived from a difference equation in the framework of discrete fractional calculus. Through the Poincaré plots and Julia sets, the map’s chaotic and fractal characteristics are studied comparing with those of a quadratic map to be proposed. The memory effect of fractional difference maps is reflected in these dynamics, and some reasonable explanations are given by combining with quantitative analysis. A coupled controller is designed to realize synchronization between fractional difference logistic map and fractional difference quadratic map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. It is calculated by combining Wolf algorithm and bisection method. In the classical case (\(\alpha = 1\)), the relative error from the theoretical value 3.569946 is only 6.99‰.

  2. Such numerical calculation processes in this work takes advantage of Frederic Moisy’s MATLAB® function shared on https://ww2.mathworks.cn/matlabcentral/fileexchange/13063-boxcount.

References

  1. May, R.: Simple mathematical models with very complicated dynamics. Nature 261(5560), 459–647 (1976)

    Article  Google Scholar 

  2. Verhulst, P.: Recherches mathématiques sur la loi d’accroissement de la population. Nouv. Mém. de l’Acad. R. des Sci. et B.-Lett. de Brux. 18, 1–41 (1845)

    Google Scholar 

  3. Ausloos, M., Dirickx, M.: The Logistic Map and the Route to Chaos: From the Beginnings to Modern Applications. Springer, Heidelberg (2006)

    Book  Google Scholar 

  4. Atsushi, N.: Fractional logistic map. arXiv:nlin/0206018v1 (2002)

  5. El-Sayed, A., El-Mesiry, A., El-Saka, H.: On the fractional-order logistic equation. Appl. Math. Lett. 20(7), 817–823 (2007)

    Article  MathSciNet  Google Scholar 

  6. Edelman, M.: Fractional maps and fractional attractors. Part I: \(\alpha \)-families of maps. Discontin. Nonlinearity Complex 1(4), 305–324 (2012)

    Article  Google Scholar 

  7. Edelman, M.: Universal fractional map and cascade of bifurcations type attractors. Chaos: An Interdiscip. J. Nonlinear Sci. 23(3), 033127 (2013)

    Article  MathSciNet  Google Scholar 

  8. Wu, G., Baleanu, D.: Discrete fractional logistic map and its chaos. Nonlinear Dyn. 75, 283–287 (2014)

    Article  MathSciNet  Google Scholar 

  9. Wu, G., Baleanu, D.: Chaos synchronization of the discrete fractional logistic map. Signal Process. 102, 96–99 (2014)

    Article  Google Scholar 

  10. Wu, G., Baleanu, D.: Discrete chaos in fractional delayed logistic maps. Nonlinear Dyn. 80(4), 1697–1703 (2015)

    Article  MathSciNet  Google Scholar 

  11. Wu, G., Baleanu, D.: Jacobian matrix algorithm for Lyapunov exponents of the discrete fractional maps. Commun. Nonlinear Sci. Numer. Simul. 22, 95–100 (2015)

    Article  MathSciNet  Google Scholar 

  12. Edelman, M.: Fractional maps and fractional attractors. Part II: Fractional difference \(\alpha \)-families of maps. Discontin. Nonlinearity Complex 4(4), 391–402 (2015)

    Article  Google Scholar 

  13. Peng, Y., Sun, K., He, S., Wang, L.: Comments on “Discrete fractional logistic map and its chaos” [Nonlinear Dyn. 75, 283–287 (2014)]. Nonlinear Dyn., 97(1), 897–901 (2019)

  14. Edelman, M.: On stability of fixed points and chaos in fractional systems. Chaos: An Interdiscip. J. Nonlinear Sci. 28(2), 023112 (2018)

    Article  MathSciNet  Google Scholar 

  15. Munkhammar, J.: Chaos in a fractional order logistic map. Fract. Calc. Appl. Anal. 16(3), 511–519 (2013)

    Article  MathSciNet  Google Scholar 

  16. Tarasova, V., Tarasov, V.: Logistic map with memory from economic model. Chaos, Solitons and Fractals 95, 84–91 (2017)

    Article  MathSciNet  Google Scholar 

  17. Yuan, L., Zheng, S., Alam, Z.: Dynamics analysis and cryptographic application of fractional logistic map. Nonlinear Dyn. 96(1), 615–636 (2019)

    Article  Google Scholar 

  18. Chen, F., Luo, X., Zhou, Y.: Existence results for nonlinear fractional difference equation. Adv. Diff. Equ. 2011(1), 713201 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Goodrich, C., Peterson, A.: Discrete Fractional Calculus. Springer, Switzerland (2015)

    Book  Google Scholar 

  20. Ostalczyk, P.: Discrete Fractional Calculus: Applications in Control and Image Processing. World Scientific, Berlin (2015)

    MATH  Google Scholar 

  21. Karmakar, C., Gubbi, J., Khandoker, A., Palaniswami, M.: Analyzing temporal variability of standard descriptors of Poincaré plots. J. Electrocardiol. 43(6), 719–724 (2010)

    Article  Google Scholar 

  22. Negro, C., Wilson, C., Butera, R., Rigatto, H., Smith, J.: Periodicity, mixed-mode oscillations, and quasiperiodicityin a rhythm-generating neural network. Biophys. J. 82(1), 206–214 (2002)

    Article  Google Scholar 

  23. Edelman, M.: Caputo standard \(\alpha \)-family of maps: Fractional difference vs. fractional. Chaos: An Interdiscip. J. Nonlinear Sci. 24(2), 023137 (2014)

    Article  MathSciNet  Google Scholar 

  24. Chen, W.: Time-space fabric underlying anomalous diffusion. Chaos, Solitons and Fractals 28(4), 923–929 (2006)

    Article  Google Scholar 

  25. Du, M., Wang, Z., Hu, H.: Measuring memory with the order of fractional derivative. Sci. Rep. 3, 3431 (2013)

    Article  Google Scholar 

  26. Wolf, A., Swift, J., Swinney, H., Vastano, J.: Determining Lyapunov exponents from a time series. Phys. D: Nonlinear Phenom. 16(3), 285–317 (1985)

    Article  MathSciNet  Google Scholar 

  27. Wang, Y., Liu, S., Li, H., Wang, D.: On the spatial Julia set generated by fractional Lotka-Volterra system with noise. Chaos, Solitons and Fractals 128, 129–138 (2019)

    Article  MathSciNet  Google Scholar 

  28. Wang, Y., Liu, S., Wang, W.: Fractal dimension analysis and control of Julia set generated by fractional Lotka-Volterra models. Commun. Nonlinear Sci. Numer. Simul. 72, 417–431 (2019)

    Article  MathSciNet  Google Scholar 

  29. Wang, Y., Liu, S., Li, H.: Fractional diffusion-limited aggregation: Anisotropy originating from memory. Fractals: Complex Geom. Patterns and Scaling Nat. Soc. 27(8), 1950137 (2019)

    Article  Google Scholar 

  30. Wang, Y., Liu, S., Li, H.: Adaptive synchronization of Julia set generated by Mittag-Leffler function. Commun. Nonlinear Sci. Numer. Simul. 83, 105115 (2020)

    Article  MathSciNet  Google Scholar 

  31. Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. Wiley, Chichester (2014)

    MATH  Google Scholar 

  32. Barnsley, M., Devaney, R., Mandelbrot, B., Peitgen, H., Saupe, D., Voss, R.: The Science of Fractal Images. Springer, New York (1988)

    Book  Google Scholar 

  33. Hengster-Movric, K., You, K., Lewis, F., Xie, L.: Synchronization of discrete-time multi-agent systems on graphs using Riccati design. Automatica 49(2), 414–423 (2013)

    Article  MathSciNet  Google Scholar 

  34. Liu, J., Liu, S.: Complex modified function projective synchronization of complex chaotic systems with known and unknown complex parameters. Appl. Math. Model. 48, 440–450 (2017)

    Article  MathSciNet  Google Scholar 

  35. Abu-Saris, R., Al-Mdallal, Q.: On the asymptotic stability of linear system of fractional-order difference equations. Fract. Calc. Appl. Anal. 16(3), 613–629 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. U1806203, 61533011). The authors sincerely thank all anonymous referees for their constructive suggestions and valuable comments that have led to the present improved version of the original manuscript. The first author is also indebted to a referee for providing related works of Prof. Mark Edelman.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shutang Liu.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical statement

We certify that this manuscript is original and has not been published and will not be submitted elsewhere for publication while being considered by Nonlinear Dynamics. And the study is not split up into several parts to increase the quantity of submissions and submitted to various journals or to one journal over time. No data have been fabricated or manipulated (including images) to support our conclusions. No data, text, or theories by others are presented as if they were our own. The submission has been received explicitly from all co-authors. And authors whose names appear on the submission have contributed sufficiently to the scientific work and therefore share collective responsibility and accountability for the results.

Human participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, S. & Li, H. On fractional difference logistic maps: Dynamic analysis and synchronous control. Nonlinear Dyn 102, 579–588 (2020). https://doi.org/10.1007/s11071-020-05927-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05927-6

Keywords

Mathematics Subject Classification

Navigation