Skip to main content
Log in

Out-of-plane vibration of an electrostatically actuated microbeam immersed in flowing fluid

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The present work investigates the out-of-plane nonlinear vibration of an electrostatically actuated cylindrical microbeam immersed in flowing fluid. The lift and drag forces as the two basic flow-induced factors affecting the dynamics of the microbeam are modeled using Van der Pol equation. The Euler–Bernoulli beam theory is used to simulate the new nonlinear model of beam cross fluid and inline motion with considering geometrical nonlinearities effects. The coupled nonlinear equations governing the microbeam out-of-plane motion and the wake oscillation are solved using the Galerkin and the step-by-step linearization methods to evaluate the response of the coupled structure to a combined applied voltage and fluid flow. Response of the microbeam to different input voltages in the presence of fluid flow is investigated in two directions of normal and parallel to fluid flow. It is shown that applying voltage not only can be used to control the lock-in regime, but also can increase the maximum dynamic amplitude up to 100 percent for a given flowing fluid. Moreover, ignoring inline vibration and geometrical nonlinearities effects may decrease the accuracy of the obtained maximum amplitude up to 18 percent in the lock-in regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bustillo, J.M., Howe, R.T., Muller, R.S.: Surface micromachining for microelectromechanical systems. Proc. IEEE 86(8), 1552–1574 (1998). https://doi.org/10.1109/5.704260

    Article  Google Scholar 

  2. Ilyas, S., Alfosail, F.K., Bellaredj, M.L.F., Younis, M.I.: On the response of MEMS resonators under generic electrostatic loadings: experiments and applications. Nonlinear Dyn. 95(3), 2263–2274 (2019). https://doi.org/10.1007/s11071-018-4690-3

    Article  Google Scholar 

  3. Younis, M.I., Abdel-Rahman, E.M., Nayfeh, A.: A reduced-order model for electrically actuated microbeam-based MEMS. J. Microelectromech. Syst. 12(5), 672–680 (2003). https://doi.org/10.1109/JMEMS.2003.818069

    Article  Google Scholar 

  4. Kuang, J.-H., Chen, C.-J.: Adomian decomposition method used for solving nonlinear pull-in behavior in electrostatic micro-actuators. Math. Comput. Model. 41(13), 1479–1491 (2005). https://doi.org/10.1016/j.mcm.2005.06.001

    Article  MathSciNet  MATH  Google Scholar 

  5. Fatoorehchi, H., Rach, R., Sakhaeinia, H.: Explicit Frost-Kalkwarf type equations for calculation of vapour pressure of liquids from triple to critical point by the Adomian decomposition method. Can. J. Chem. Eng. 95(11), 2199–2208 (2017). https://doi.org/10.1002/cjce.22853

    Article  Google Scholar 

  6. Fatoorehchi, H., Abolghasemi, H., Zarghami, R., Rach, R.: Feedback control strategies for a cerium-catalyzed Belousov-Zhabotinsky chemical reaction system. Can. J. Chem. Eng. 93(7), 1212–1221 (2015). https://doi.org/10.1002/cjce.22213

    Article  MATH  Google Scholar 

  7. Moradweysi, P., Ansari, R., Hosseini, K., Sadeghi, F.: Application of modified Adomian decomposition method to pull-in instability of nano-switches using nonlocal Timoshenko beam theory. Appl. Math. Model. 54, 594–604 (2018). https://doi.org/10.1016/j.apm.2017.10.011

    Article  MathSciNet  MATH  Google Scholar 

  8. Chuang, W.-C., Hu, Y.-C., Lee, C.-Y., Shih, W.-P., Chang, P.-Z.: Electromechanical behavior of the curled cantilever beam. J. Micro/Nanolithogr. MEMS MOEMS 8(3), 033020 (2009)

    Article  Google Scholar 

  9. Collenz, A., Bona, F.D., Gugliotta, A., Somà, A.: Large deflections of microbeams under electrostatic loads. J. Micromech. Microeng. 14(3), 365–373 (2003). https://doi.org/10.1088/0960-1317/14/3/008

    Article  Google Scholar 

  10. Feng, C.C.: The measurements of vortex-induced effects in flow pasta stationary and oscillating circular and D-section cylinders. British Columbia (1968)

  11. Blanchard, A., Bergman, L.A., Vakakis, A.F.: Vortex-induced vibration of a linearly sprung cylinder with an internal rotational nonlinear energy sink in turbulent flow. Nonlinear Dyn. 99(1), 593–609 (2020). https://doi.org/10.1007/s11071-019-04775-3

    Article  MATH  Google Scholar 

  12. Javed, U., Abdelkefi, A.: Characteristics and comparative analysis of piezoelectric-electromagnetic energy harvesters from vortex-induced oscillations. Nonlinear Dyn. 95(4), 3309–3333 (2019). https://doi.org/10.1007/s11071-018-04757-x

    Article  Google Scholar 

  13. Khalak, A., Williamson, C.H.K.: Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping. J. Fluids Struct. 13(7), 813–851 (1999). https://doi.org/10.1006/jfls.1999.0236

    Article  Google Scholar 

  14. Wang, X.Q., So, R.M.C., Chan, K.T.: A non-linear fluid force model for vortex-induced vibration of an elastic cylinder. J. Sound Vib. 260(2), 287–305 (2003). https://doi.org/10.1016/S0022-460X(02)00945-8

    Article  Google Scholar 

  15. Facchinetti, M.L., de Langre, E., Biolley, F.: Coupling of structure and wake oscillators in vortex-induced vibrations. J. Fluids Struct. 19(2), 123–140 (2004). https://doi.org/10.1016/j.jfluidstructs.2003.12.004

    Article  Google Scholar 

  16. Sarpkaya, T.: Hydrodynamic damping, flow-induced oscillations, and biharmonic response. J. Offshore Mech. Arct. Eng. 117(4), 232–238 (1995). https://doi.org/10.1115/1.2827228

    Article  Google Scholar 

  17. Stappenbelt, B.: Vortex-induced motion of nonlinear compliant low aspect ratio cylindrical systems. ISOPE-11-21-4-280 21(04), 7 (2011)

  18. Moe, G., Wu, Z.J.: The lift force on a cylinder vibrating in a current. J. Offshore Mech. Arct. Eng. 112(4), 297–303 (1990). https://doi.org/10.1115/1.2919870

    Article  Google Scholar 

  19. Mohamadi, B., Eftekhari, S.A., Toghraie, D.: Numerical investigation of nonlinear vibration analysis for triple-walled carbon nanotubes conveying viscous fluid. Int. J. Numer. Meth. Heat Fluid Flow 30(4), 1689–1723 (2019). https://doi.org/10.1108/HFF-10-2018-0600

    Article  Google Scholar 

  20. Oveissi, S., Toghraie, D., Eftekhari, S.A., Chamkha Ali, J.: Instabilities of SWCNT conveying laminar, incompressible and viscous fluid flow: effects of Knudsen number, the Winkler, the Pasternak elastic and the viscoelastic medium. Int. J. Numer. Meth. Heat Fluid Flow 30(4), 1773–1794 (2019). https://doi.org/10.1108/HFF-10-2018-0563

    Article  Google Scholar 

  21. Ghorbanpour Arani, A., Hashemian, M., Kolahchi, R.: Nonlocal Timoshenko beam model for dynamic stability of double-walled boron nitride nanotubes conveying nanoflow. Proc. Inst. Mech. Eng., Part N: J. Nanoeng. Nanosyst. 229(1), 2–16 (2013). https://doi.org/10.1177/1740349913513449

    Article  Google Scholar 

  22. Yadykin, Y., Tenetov, V., Levin, D.: The added mass of a flexible plate oscillating in a fluid. J. Fluids Struct. 17(1), 115–123 (2003). https://doi.org/10.1016/S0889-9746(02)00100-7

    Article  Google Scholar 

  23. Cho, Y., Kwak, B.M., Pisano, A.P., Howe, R.T.: Viscous energy dissipation in laterally oscillating planar microstructures: a theoretical and experimental study. In: [1993] Proceedings IEEE Micro Electro Mechanical Systems, 10 Feb. 1993, pp. 93–98

  24. Golzar, F.G., Shabani, R., Hatami, H., Rezazadeh, G.: Dynamic response of an electrostatically actuated micro-beam in an incompressible viscous fluid cavity. J. Microelectromech. Syst. 23(3), 555–562 (2014). https://doi.org/10.1109/JMEMS.2013.2291037

    Article  Google Scholar 

  25. Chon, J.W.M., Mulvaney, P., Sader, J.E.: Experimental validation of theoretical models for the frequency response of atomic force microscope cantilever beams immersed in fluids. J. Appl. Phys. 87(8), 3978–3988 (2000). https://doi.org/10.1063/1.372455

    Article  Google Scholar 

  26. Guan, N., Luan, T., Liu, Z.-G., Zhang, C.-W., Jiang, G.: Vortex distribution and mixed convection of liquid flow across micro-cylinders in a rectangular channel. Heat Mass Transf. 52(3), 657–670 (2016). https://doi.org/10.1007/s00231-015-1640-1

    Article  Google Scholar 

  27. Tamayol, A., Yeom, J., Akbari, M., Bahrami, M.: Low Reynolds number flows across ordered arrays of micro-cylinders embedded in a rectangular micro/minichannel. Int. J. Heat Mass Transf. 58(1), 420–426 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.077

    Article  Google Scholar 

  28. Alfieri, F., Tiwari, M.K., Renfer, A., Brunschwiler, T., Michel, B., Poulikakos, D.: Computational modeling of vortex shedding in water cooling of 3D integrated electronics. Int. J. Heat Fluid Flow 44, 745–755 (2013). https://doi.org/10.1016/j.ijheatfluidflow.2013.10.004

    Article  Google Scholar 

  29. Pierce, J.: Experimental Study of Micro-Vortex Generators. The University of Texas, Austin (2010)

    Google Scholar 

  30. Shang, X., Huang, X., Yang, C.: Vortex generation and control in a microfluidic chamber with actuations. Phys. Fluids 28(12), 122001 (2016). https://doi.org/10.1063/1.4971314

    Article  Google Scholar 

  31. Wang, X., Zhou, J., Papautsky, I.: Vortex-aided inertial microfluidic device for continuous particle separation with high size-selectivity, efficiency, and purity. Biomicrofluidics 7(4), 044119 (2013). https://doi.org/10.1063/1.4818906

    Article  Google Scholar 

  32. Rezaee, M., Sharafkhani, N.: Electrostatically frequency tunable micro-beam-based piezoelectric fluid flow energy harvester. Smart Mater. Struct. 26(7), 075008 (2017). https://doi.org/10.1088/1361-665x/aa74f3

    Article  Google Scholar 

  33. Blevins, R.D.: Flow-Induced Vibration. Van Nostrand Reinhold, New York (1990)

    MATH  Google Scholar 

  34. Kaneko, S., Nakamura, I., Kato, T.F.M., Ishihara, K., Nishihara, T., Mureithi, N.W., Langthjem, M.A.: Fluid-Induced Vibrations, Classifications and Lessons from Practical Experiences, 2nd edn. Elsevier, Amsterdam (2014)

    Google Scholar 

  35. Païdoussis, M.P., Price, S.J., de Langre, E.: Fluid Structure Interactions: Cross-Flow-Induced Instabilities. Cambridge University Press, New York (2011)

    MATH  Google Scholar 

  36. Blevins, R.D.: Flow-Induced Vibration. Van Nostrand Reinhold, Florida (2001)

    MATH  Google Scholar 

  37. Williamson, C.H.K.: Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28(1), 477–539 (1996). https://doi.org/10.1146/annurev.fl.28.010196.002401

    Article  MathSciNet  Google Scholar 

  38. Krenk, S., Nielsen, S.R.K.: Energy balanced double oscillator model for vortex-induced vibrations. J. Eng. Mech. 125(3), 263–271 (1999). https://doi.org/10.1061/(ASCE)0733-9399(1999)125:3(263)

    Article  Google Scholar 

  39. Nayfeh, A.H., Frank Pai, P.: Linear and Nonlinear Structural Mechanics. Wiley, Hoboken (2004)

    Book  Google Scholar 

  40. Dowell, E., McHugh, K.: Equations of motion for an inextensible beam undergoing large deflections. J. Appl. Mech. 83(5), 3–9 (2016). https://doi.org/10.1115/1.4032795

    Article  Google Scholar 

  41. Ke, C., Espinosa, H.D., Pugno, N.: Numerical analysis of nanotube based nems devices—part II: role of finite kinematics, stretching and charge concentrations. J. Appl. Mech. 72(5), 726–731 (2005). https://doi.org/10.1115/1.1985435

    Article  MATH  Google Scholar 

  42. Meirovitch, L.: Analytical Methods in Vibration. Macmillan, New York (1967)

    MATH  Google Scholar 

  43. Young, D., Felgar Jr., R.P.: Tables of Characteristic Functions Representing Normal Modes of Vibration for a Beam, vol. 44. University of Texas, Austin (1949)

    Google Scholar 

  44. Rezaee, M., Sharafkhani, N.: Nonlinear dynamic analysis of an electrostatically actuated cylindrical micro-beam subjected to cross fluid flow. Int. J. Appl. Mech. 11(06), 1950061 (2019). https://doi.org/10.1142/S1758825119500613

    Article  Google Scholar 

  45. Dai, H.L., Wang, L., Qian, Q., Ni, Q.: Vortex-induced vibrations of pipes conveying fluid in the subcritical and supercritical regimes. J. Fluids Struct. 39, 322–334 (2013). https://doi.org/10.1016/j.jfluidstructs.2013.02.015

    Article  Google Scholar 

  46. Blevins, R.D., Coughran, C.S.: Experimental investigation of vortex-induced vibration in one and two dimensions with variable mass, damping, and Reynolds number. J. Fluids Eng. (2009). https://doi.org/10.1115/1.3222904

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mousa Rezaee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaee, M., Sharafkhani, N. Out-of-plane vibration of an electrostatically actuated microbeam immersed in flowing fluid. Nonlinear Dyn 102, 1–17 (2020). https://doi.org/10.1007/s11071-020-05882-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05882-2

Keywords

Navigation