Skip to main content
Log in

Asymptotic stabilization of general nonlinear fractional-order systems with multiple time delays

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, two new control methods based on a Lyapunov-like function and a vector Lyapunov function separately were put forward to solve the asymptotic stabilization problem of general fractional-order nonlinear systems with multiple time delays. First, we deduced a new asymptotic stabilization control criterion based on a Lyapunov-like function after discussing the asymptotic stability criterion of general fractional-order nonlinear systems. Moreover, to address the problem of multiple time delays of the nonlinear system, we derived another asymptotic stabilization control criterion based on a vector Lyapunov function and an M-matrix via the new controller. Finally, the feasibility and effectiveness of the proposed controllers were verified by several common fractional-order nonlinear systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Wu, C., Lv, S., Long, J., Yang, J.: Self-similarity and adaptive aperiodic stochastic resonance in a fractional-order system. Nonlinear Dyn. 91, 1697–1711 (2018)

    Article  Google Scholar 

  2. Chinnathambi, R., Rihan, F.A.: Stability of fractional-order prey–predator system with time-delay and Monod-Haldane functional response. Nonlinear Dyn. 92, 1–12 (2018)

    Article  Google Scholar 

  3. Tang, Y., Xiao, M., Jiang, G., Lin, J., Cao, J., Zheng, W.: Fractional-order PD control at Hopf bifurcations in a fractional-order congestion control system. Nonlinear Dyn. 90, 2185–2198 (2017)

    Article  MathSciNet  Google Scholar 

  4. Liu, P., Zeng, Z., Wang, J.: Multiple mittag-leffler stability of fractional-order recurrent neural networks. IEEE Trans. Syst. Man Cybern. Syst. 99, 1–10 (2017)

    Google Scholar 

  5. Li, R., Cao, J., Alsaedi, A., Fuad, A.: Stability analysis of fractional-order delayed neural networks. Nonlinear Anal. Model. Control 22, 505–520 (2017)

    Article  MathSciNet  Google Scholar 

  6. Zhang, R., Yang, S.: Stabilization of fractional-order chaotic system via a single state adaptive-feedback controller. Nonlinear Dyn. 68, 45–51 (2018)

    Article  MathSciNet  Google Scholar 

  7. Liu, S., Zhou, X.F., Li, X., Jiang, W.: Stability of fractional nonlinear singular systems and its applications in synchronization of complex dynamical networks. Nonlinear Dyn. 84, 1–9 (2016)

    Article  MathSciNet  Google Scholar 

  8. Čermák, J., Nechvátal, L.: The Routh–Hurwitz conditions of fractional type in stability analysis of the Lorenz dynamical system. Nonlinear Dyn. 87, 939–954 (2017)

    Article  MathSciNet  Google Scholar 

  9. Zhang, Z., Zhang, J., Ai, Z.: A novel stability criterion of the time-lag fractional-order gene regulatory network system for stability analysis. Commun. Nonlinear Sci. Numer. Simul. 66, 96–108 (2019)

    Article  MathSciNet  Google Scholar 

  10. Ren, F., Cao, F., Cao, J.: Mittag–Leffler stability and generalized Mittag–Leffler stability of fractional-order gene regulatory networks. Neurocomputing 160, 185–190 (2015)

    Article  Google Scholar 

  11. Ding, Y., Wang, Z., Ye, H.: Optimal control of a fractional-order HIV-immune system with memory. IEEE Trans. Control Syst. Technol. 20, 763–769 (2012)

    Article  Google Scholar 

  12. Huo, J., Zhao, H., Zhu, L.: The effect of vaccines on backward bifurcation in a fractional order HIV model. Nonlinear Anal. Real World Appl. 26, 289–305 (2015)

    Article  MathSciNet  Google Scholar 

  13. Yang, Q., Zeng, C.: Chaos in fractional conjugate Lorenz system and its scaling attractors. Commun. Nonlinear Sci. Numer. Simul. 15, 4041–4051 (2010)

    Article  MathSciNet  Google Scholar 

  14. Chen, L., He, Y., Chai, Y.: New results on stability and stabilization of a class of nonlinear fractional-order systems. Nonlinear Dyn. 75, 633–641 (2014)

    Article  MathSciNet  Google Scholar 

  15. Huang, S., Wang, B.: Stability and stabilization of a class of fractional-order nonlinear systems for. Nonlinear Dyn. 88, 973–984 (2017)

    Article  MathSciNet  Google Scholar 

  16. Li, Y., Chen, Y.Q., Podlubny, I.: Mittag–Leffler stability of fractional order nonlinear dynamic systems. Automatica 45, 1965–1969 (2009)

    Article  MathSciNet  Google Scholar 

  17. Li, Y., Chen, Y.Q., Podlubny, I.: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag–Leffler stability. Comput. Math. Appl. 59, 1810–1821 (2010)

    Article  MathSciNet  Google Scholar 

  18. Tuan, H.T., Trinh, H.: Stability of fractional-order nonlinear systems by Lyapunov direct method. IET Control Theory Appl. 12, 2417–2422 (2017)

    Article  MathSciNet  Google Scholar 

  19. Tuan, H.T., Trinh, H.: A linearized stability theorem for nonlinear delay fractional differential equations. IEEE Trans. Autom. Control 63, 3180–3186 (2018)

    Article  MathSciNet  Google Scholar 

  20. Zhu, Y.Z., Zhong, Z.X., Michael, V.B., Zhou, D.H.: A descriptor system approach to stability and stabilization of discrete-time switched PWA systems. IEEE Trans. Autom. Control 63, 3456–3463 (2018)

    Article  MathSciNet  Google Scholar 

  21. Zhu, Y.Z., Zhong, Z.X., Zhou, D.H.: Quasi-synchronization of discrete-time Lur’e-type switched systems with parameter mismatches and relaxed PDT constraints. IEEE Trans. Cybern. 50, 2026–2037 (2019)

    Article  Google Scholar 

  22. Wei, Y., Chen, Y., Cheng, S., Wang, Y.: Completeness on the stability criterion of fractional order LTI systems. Fract. Calc. Appl. Anal. 20, 159–172 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Wei, Y., Chen, Y., Liu, T., Wang, Y.: Lyapunov functions for nabla discrete fractional order systems. ISA Trans. 88, 82–90 (2019)

    Article  Google Scholar 

  24. Bao, H., Park, J.H., Cao, J.: Non-fragile state estimation for fractional-order delayed memristive BAM neural networks. Neural Netw. 119, 190–199 (2019)

    Article  Google Scholar 

  25. Lenka, B.K.: Fractional comparison method and asymptotic stability of multivariable fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 69, 398–415 (2019)

    Article  MathSciNet  Google Scholar 

  26. Zhang, W., Zhang, H., Cao, J., Fuad, E., Chen, D.: Synchronization in uncertain fractional-order memristive complex-valued neural networks with multiple time delays. Neural Netw. 110, 186–198 (2019)

    Article  Google Scholar 

  27. Jia, J., Huang, X., Li, Y., Cao, J.: Global stabilization of fractional-order memristor-based neural networks with time delay. IEEE Trans. Neural Netw. Learn. Syst. 99, 1–13 (2019)

    Article  Google Scholar 

  28. Siljak, D.D.: Decentralized Control of Complex Systems. Academic Press, Cambridge (2012)

    MATH  Google Scholar 

  29. Zhe, Z., Ushio, T., Ai, Z., Jing, Z.: Novel stability condition for delayed fractional-order composite systems based on vector Lyapunov function. Nonlinear Dyn. 99, 1–15 (2019)

    Google Scholar 

  30. Wu, C., Ren, J.: External stability of Caputo fractional-order nonlinear control systems. Int. J. Robust Nonlinear Control 29, 4041–4055 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Trigeassou, J.C., Maamri, N., Sabatier, J.: A Lyapunov approach to the stability of fractional differential equations. Signal Process. 91, 437–445 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the National Nature Science Foundation of China (No. 61573299), the Hunan Provincial Innovation Foundation For Postgraduate (CX20190304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Zhe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhe, Z., Jing, Z. Asymptotic stabilization of general nonlinear fractional-order systems with multiple time delays. Nonlinear Dyn 102, 605–619 (2020). https://doi.org/10.1007/s11071-020-05866-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05866-2

Keywords

Navigation