Skip to main content
Log in

Review and new theoretical perspectives on active disturbance rejection control for uncertain finite-dimensional and infinite-dimensional systems

  • Review
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The active disturbance rejection control (AD RC), first proposed by Jingqing Han in late 1980s, is a powerful control technology being able to deal with external disturbances and internal uncertainties in large scale for control systems in engineering applications. This survey paper will articulate, from a theoretical perspective, the origin, ideology and progress of ADRC for not only uncertain finite-dimensional systems but also uncertain infinite-dimensional ones. Some recent theoretical developments, general framework and unsolved problems of ADRC for finite-dimensional systems with mismatched disturbances and uncertainties by output feedback, uncertain finite-dimensional stochastic systems, uncertain infinite-dimensional systems described by both the wave equation and the fractional-order partial differential equation are successively addressed, from which we see the challenges and opportunities for this remarkable emerging control technology to various types of control systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xie, L.L., Guo, L.: How much uncertainty can be dealt with by feedback? IEEE Trans. Automat. Control. 45(12), 2203–2217 (2000)

    MathSciNet  MATH  Google Scholar 

  2. Gao, Z.: On the centrality of disturbance rejection in automatic control. ISA Trans. 53(4), 850–857 (2014)

    Google Scholar 

  3. Chen, W.H., Yang, J., Guo, L., Li, S.: Disturbance-observer-based control and related methods-An overview. IEEE Trans. Ind. Electron. 63(2), 1083–1095 (2015)

    Google Scholar 

  4. Guo, L., Cao, S.: Anti-disturbance control theory for systems with multiple disturbances: a survey. ISA Trans. 53(4), 846–849 (2014)

    Google Scholar 

  5. Maybeck, P.S.: Stochastic Models, Estimation, and Control, vol. 3. Academic Press, Cambridge (1982)

    MATH  Google Scholar 

  6. Deng, H., Krstić, M.: Stochastic nonlinear stabilization-I: a backstepping design. Syst. Control Lett. 32(3), 143–150 (1997)

    MathSciNet  MATH  Google Scholar 

  7. Pan, Z., Basar, T.: Backstepping controller design for nonlinear stochastic systems under a risk-sensitive cost criterion. SIAM J. Control Optim. 37(3), 957–995 (1999)

    MathSciNet  MATH  Google Scholar 

  8. Åström, K.J.: Introduction to Stochastic Control Theory. Courier Corporation, Chelmsford (2012)

    MATH  Google Scholar 

  9. Zhao, X.Y., Deng, F.Q.: Divided state feedback control of stochastic systems. IEEE Trans. Automat. Control. 60(7), 1870–1885 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Qu, Z.: Robust Control of Nonlinear Uncertain Systems. Wiley, New York (1998)

    MATH  Google Scholar 

  11. Zhou, K., Doyle, J.C.: Essentials of Robust Control, vol. 104. Prentice Hall, Upper Saddle River (1998)

    MATH  Google Scholar 

  12. Green, M., Limebeer, D.J.: Linear Robust Control. Courier Corporation, Chelmsford (2012)

    MATH  Google Scholar 

  13. Li, H., Xie, L., Wang, Y.: On robust control invariance of Boolean control networks. Automatica 68, 392–396 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Zhao, Z., He, X., Ren, Z., Wen, G.: Boundary adaptive robust control of a flexible riser system with input nonlinearities. IEEE Trans. Syst. Man Cybern. Syst. (2018). https://doi.org/10.1109/TSMC.2018.2882734

    Article  Google Scholar 

  15. Van Der Schaft, A.J.: \(L_{2}\)-gain analysis of nonlinear systems and nonlinear state-feedback \(H_{\infty }\) control. IEEE Trans. Automat. Control. 37(6), 770–784 (1992)

    MathSciNet  MATH  Google Scholar 

  16. Xu, S., Lam, J., Mao, X.: Delay-dependent \(H_ {\infty }\) control and filtering for uncertain markovian jump systems with time-varying delays. IEEE Trans. Circuits Syst. I. Regul. Pap. 54(9), 2070–2077 (2007)

    MathSciNet  MATH  Google Scholar 

  17. Hou, T., Zhang, W., Ma, H.: Finite horizon \( H_ {2}/H_ {\infty } \) control for discrete-time stochastic systems with Markovian jumps and multiplicative noise. IEEE Trans. Automat. Control. 55(5), 1185–1191 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Chang, X.H., Yang, G.H.: New results on output feedback \( H_ {\infty } \) control for linear discrete-time systems. IEEE Trans. Automat. Control. 59(5), 1355–1359 (2013)

    MathSciNet  Google Scholar 

  19. Krstić, M., Kanellakopoulos, I., Kokotović, P.: Nonlinear and Adaptive Control Design. Wiley, New York (1995)

    MATH  Google Scholar 

  20. Åström, K.J., Wittenmark, B.: Adaptive Control. Courier Corporation, Chelmsford (2013)

    MATH  Google Scholar 

  21. Francis, B.A., Wonham, W.M.: The internal model principle of control theory. Automatica 12(5), 457–465 (1976)

    MathSciNet  MATH  Google Scholar 

  22. Liu, L., Chen, Z.Y., Huang, J.: Parameter convergence and nomimal internal model with an adaptive output regulation problem. Automatica 45(5), 1306–1311 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Chen, W.H.: Disturbance observer based control for nonlinear systems. IEEE/ASME Trans. Mech. 9(4), 706–710 (2004)

    MathSciNet  Google Scholar 

  24. Li, S., Yang, J., Chen, W.H., Chen, X.: Disturbance Observer-Based Control: Methods and Applications. CRC Press, Boca Raton (2016)

    Google Scholar 

  25. Zhao, Z., Ahn, C.K., Li, H.X.: Boundary antidisturbance control of a spatially nonlinear flexible string system. IEEE Trans. Ind. Electron. 67(6), 4846–4856 (2020)

    Google Scholar 

  26. Zhao, Z., Ahn, C.K., Wen, G.: Cooperative disturbance rejection control of vibrating flexible riser systems. Nonlinear Dyn. 98(3), 1603–1613 (2019)

    MATH  Google Scholar 

  27. Han, J.Q., Wang, W.: Nonlinear tracking-differentiator. J. Syst. Sci. Math. Sci. 14(2), 177–183 (1994). (in Chinese)

    MATH  Google Scholar 

  28. Han, J.Q.: A class of extended state observers for uncertain systems. Control Decision 10(1), 85–88 (1995). (in Chinese)

    Google Scholar 

  29. Han, J.Q.: Auto-disturbance rejection control and applications. Control Decision 13(1), 19–23 (1998). (in Chinese)

    MathSciNet  Google Scholar 

  30. Han, J.Q.: Active Disturbance Rejection Control-The Technique for Extimating and Compensating Uncertainties. National Defence Industry Press, Beijing (2008)

    Google Scholar 

  31. Han, J.Q.: From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56(3), 900–906 (2009)

    Google Scholar 

  32. Guo, B.Z., Zhao, Z.L.: Active Disturbance Rejection Control for Nonlinear Systems: An Introduction. Wiley, New York (2016)

    MATH  Google Scholar 

  33. Chang, X., Li, Y., Zhang, W., Wang, N., Xue, W.: Active disturbance rejection control for a flywheel energy storage system. IEEE Trans. Ind. Electron. 62(2), 991–1001 (2014)

    Google Scholar 

  34. Castañeda, L.A., Luviano-Juárez, A., Chairez, I.: Robust trajectory tracking of a delta robot through adaptive active disturbance rejection control. IEEE Trans. Control Syst. Technol. 23(4), 1387–1398 (2014)

    Google Scholar 

  35. Ma, D., Xia, Y., Li, T., Chang, K.: Active disturbance rejection and predictive control strategy for a quadrotor helicopter. IET Control Theory Appl. 10(17), 2213–2222 (2016)

    MathSciNet  Google Scholar 

  36. Yao, J., Deng, W.: Active disturbance rejection adaptive control of hydraulic servo systems. IEEE Trans. Ind. Electron. 64(10), 8023–8032 (2017)

    Google Scholar 

  37. Sun, L., Li, D.H., Hu, K.T., Lee, K.Y., Pan, F.P.: On tuning and practical implementation of active disturbance rejection controller: a case study from a regenerative heater in a 1000 MW power plant. Ind. Eng. Chem. Res. 55, 6686–6695 (2016)

    Google Scholar 

  38. Sun, L., Zhang, Y., Li, D., Lee, K.Y.: Tuning of active disturbance rejection control with application to power plant furnace regulation. Control Eng. Pract. 92, 104122 (2019)

    Google Scholar 

  39. Sun, B., Gao, Z.: A DSP-based active disturbance rejection control design for a 1-kW H-bridge DC-DC power converter. IEEE Trans. Ind. Electron. 52(5), 1271–1277 (2005)

    Google Scholar 

  40. Wu, D., Chen, K.: Design and analysis of precision active disturbance rejection control for noncircular turning process. IEEE Trans. Ind. Electron. 56(7), 2746–2753 (2009)

    Google Scholar 

  41. Li, S., Yang, X., Yang, D.: Active disturbance rejection control for high pointing accuracy and rotation speed. Automatica 45(8), 1854–1860 (2009)

    MathSciNet  MATH  Google Scholar 

  42. Vincent, J., Morris, D., Usher, N., Gao, Z.Q., Zhao, S., Nicoletti, A., Zheng, Q.L.: On active disturbance rejection based control design for superconducting RF cavities. Nucl. Instrum Methods Phys. Res. A. 643, 11–16 (2011)

    Google Scholar 

  43. Xia, Y.Q., Fu, M.Y.: Compound Control Methodology for Flight Vehicles. Springer, Berlin (2013)

    MATH  Google Scholar 

  44. Huang, C.E., Li, D., Xue, Y.: Active disturbance rejection control for the ALSTOM gasifier benchmark problem. Control Eng. Pract. 21(4), 556–564 (2013)

    Google Scholar 

  45. Tang, H., Li, Y.: Development and active disturbance rejection control of a compliant micro-/nanopositioning piezostage with dual mode. IEEE Trans. Ind. Electron. 61(3), 1475–1492 (2013)

    Google Scholar 

  46. Sira-Ramírez, H., Linares-Flores, J., García-Rodríguez, C., Contreras-Ordaz, M.A.: On the control of the permanent magnet synchronous motor: an active disturbance rejection control approach. IEEE Trans. Control Syst. Technol. 22(5), 2056–2063 (2014)

    Google Scholar 

  47. Zhu, E., Pang, J., Sun, N., Gao, H., Sun, Q., Chen, Z.: Airship horizontal trajectory tracking control based on active disturbance rejection control (ADRC). Nonlinear Dyn. 75(4), 725–734 (2014)

    MathSciNet  Google Scholar 

  48. Xue, W., Bai, W., Yang, S., Song, K., Huang, Y., Xie, H.: ADRC with adaptive extended state observer and its application to air-fuel ratio control in gasoline engines. IEEE Trans. Ind. Electron. 62(9), 5847–5857 (2015)

    Google Scholar 

  49. Herbst, G.: Practical active disturbance rejection control: Bumpless transfer, rate limitation, and incremental algorithm. IEEE Trans. Ind. Electron. 63(3), 1754–1762 (2015)

    Google Scholar 

  50. Tao, J., Sun, Q., Tan, P., Chen, Z., He, Y.: Active disturbance rejection control (ADRC)-based autonomous homing control of powered parafoils. Nonlinear Dyn. 86(3), 1461–1476 (2016)

    Google Scholar 

  51. Yang, H., Cheng, L., Xia, Y., Yuan, Y.: Active disturbance rejection attitude control for a dual closed-loop quadrotor under gust wind. IEEE Trans. Control Syst. Technol. 26(4), 1400–1405 (2017)

    Google Scholar 

  52. Sun, L., Hua, Q., Li, D., Pan, L., Xue, Y., Lee, K.Y.: Direct energy balance based active disturbance rejection control for coal-fired power plant. ISA Trans. 70, 486–493 (2017)

    Google Scholar 

  53. Yuan, Y., Zhang, P., Wang, Z., Guo, L., Yang, H.: Active disturbance rejection control for the ranger neutral buoyancy vehicle: A delta operator approach. IEEE Trans. Ind. Electron. 64(12), 9410–9420 (2017)

    Google Scholar 

  54. Chu, Z., Sun, Y., Wu, C., Sepehri, N.: Active disturbance rejection control applied to automated steering for lane keeping in autonomous vehicles. Control Eng. Pract. 74, 13–21 (2018)

    Google Scholar 

  55. Ahi, B., Haeri, M.: Linear active disturbance rejection control from the practical aspects. IEEE/ASME Trans. Mechatron. 23(6), 2909–2919 (2018)

    Google Scholar 

  56. Cai, Z., Lou, J., Zhao, J., Wu, K., Liu, N., Wang, Y.X.: Quadrotor trajectory tracking and obstacle avoidance by chaotic grey wolf optimization-based active disturbance rejection control. Mech. Syst. Signal Process. 128, 636–654 (2019)

    Google Scholar 

  57. Ren, L., Mao, C., Song, Z., Liu, F.: Study on active disturbance rejection control with actuator saturation to reduce the load of a driving chain in wind turbines. Renew. Eng. 133, 268–274 (2019)

    Google Scholar 

  58. Gong, L., Wang, Q., Dong, C.: Disturbance rejection control of morphing aircraft based on switched nonlinear systems. Nonlinear Dyn. 96(2), 975–995 (2019)

    MATH  Google Scholar 

  59. Liu, J., Sun, M., Chen, Z., Sun, Q.: Output feedback control for aircraft at high angle of attack based upon fixed-time extended state observer. Aerosp. Sci. Technol 95, 105468 (2019)

    Google Scholar 

  60. Carreńo-Zagarra, J.J., Guzmán, J.L., Moreno, J.C., Villamizar, R.: Linear active disturbance rejection control for a raceway photobioreactor. Control Eng. Pract. 85, 271–279 (2019)

    Google Scholar 

  61. Sun, H., Sun, Q., Wu, W., Chen, Z., Tao, J.: Altitude control for flexible wing unmanned aerial vehicle based on active disturbance rejection control and feedforward compensation. Int. J. Robust Nonlinear Control. 30(1), 222–245 (2020)

    MathSciNet  Google Scholar 

  62. Technical Reference Manual, “TMS320F28069M, TMS320F28068M InstaSPIN\(^{\rm TM}\)-MOTION Software”, Literature Number: SPRUHJ0A. Texas Instruments, April 2013-Revised November (2013)

  63. Kinetis Motor Suite, Freescale Semiconductor Inc., http://cache.freescale.com/files/soft_dev_tools/doc/fact_sh eet/KINTMOTSUITFS.pdf, Accessed on June 5, (2015)

  64. Zheng, Q., Gao, Z.Q.: An energy saving, factory-validated disturbance decoupling control design for extrusion processes. In: The 10th World Congress on Intelligent Control and Automation, Beijing, pp. 2891–2896 (2012)

  65. Guo, B.Z., Zhao, Z.L.: Active disturbance rejection control: Theoretical perspectives. Commun. Inf. Syst. 15(3), 361–421 (2015)

    MathSciNet  MATH  Google Scholar 

  66. Feng, H., Guo, B.Z.: Active disturbance rejection control: Old and new results. Annu. Rev. Control 44, 238–248 (2017)

    Google Scholar 

  67. Huang, Y., Xue, W.: Active disturbance rejection control: methodology and theoretical analysis. ISA Trans. 53(4), 963–976 (2014)

    MathSciNet  Google Scholar 

  68. Guo, B.Z., Zhao, Z.L.: On convergence of tracking differentiator. Int. J. Control. 84(4), 693–701 (2011)

    MathSciNet  MATH  Google Scholar 

  69. Guo, B.Z., Zhao, Z.L.: Weak convergence of nonlinear high-gain tracking differentiator. IEEE Trans. Automat. Control. 58, 1074–1080 (2013)

    MathSciNet  MATH  Google Scholar 

  70. Zhao, Z.L., Guo, B.Z.: A nonlinear extended state observer based on fractional power functions. Automatica 81, 286–296 (2017)

    MathSciNet  MATH  Google Scholar 

  71. Gao, Z.Q.: Scaling and bandwidth-parameterization based controller tuning. In: American Control Conference 4989–4996, (2003)

  72. Zheng, Q., Gao, L., Gao, Z.: On stability analysis of active disturbance rejection control for nonlinear time-varying plants with unknow dynamics. IEEE Conf. Decis. Control. 3501–3506, (2007)

  73. Guo, B.Z., Zhao, Z.L.: On the convergence of extended state observer for nonlinear systems with uncertainty. Syst. Control Lett. 60, 420–430 (2011)

    MathSciNet  MATH  Google Scholar 

  74. Guo, B.Z., Zhao, Z.L.: On convergence of the nonlinear active disturbance rejection control for MIMO systems. SIAM J. Control Optim. 51(2), 1727–1757 (2013)

    MathSciNet  MATH  Google Scholar 

  75. Pu, Z.Q., Yuan, R.Y., Yi, J.Q., Tan, X.M.: A class of adaptive extended state observers for nonlinear disturbed systems. IEEE Trans. Ind. Electron. 62, 5858–5869 (2015)

    Google Scholar 

  76. Shao, X.L., Wang, H.L.: Back-stepping active disturbance rejection control design for integrated missile guidance and control system via reduced-order ESO. ISA Trans. 57, 10–22 (2015)

    Google Scholar 

  77. Yao, J., Deng, W.: Active disturbance rejection adaptive control of uncertain nonlinear systems: theory and application. Nonlinear Dyn. 89(3), 1611–1624 (2017)

    MathSciNet  MATH  Google Scholar 

  78. Ran, M., Wang, Q., Dong, C., Hou, Y., Wang, Z.: Backstepping active disturbance rejection control: a delayed activation approach. IET Control Theory Appl. 11, 2336–2342 (2017)

    MathSciNet  Google Scholar 

  79. Tan, W., Fu, C.: Linear active disturbance-rejection control: analysis and tuning via IMC. IEEE Trans. Ind. Electron. 63(4), 2350–2359 (2015)

    MathSciNet  Google Scholar 

  80. Jiang, T.T., Huang, C.D., Guo, L.: Control of uncertain nonlinear systems based on observers and estimators. Automatica 59, 35–47 (2015)

    MathSciNet  MATH  Google Scholar 

  81. Li, J., Xia, Y., Qi, X., Gao, Z.: On the necessity, scheme, and basis of the linear-nonlinear switching in active disturbance rejection control. IEEE Trans. Ind. Electron. 64(2), 1425–1435 (2016)

    Google Scholar 

  82. Shao, S., Gao, Z.: On the conditions of exponential stability in active disturbance rejection control based on singular perturbation analysis. Int. J. Control. 90, 2085–2097 (2017)

    MathSciNet  MATH  Google Scholar 

  83. Sira-Ramírez, H., Luviano-Juárez, A., Ramírez-Neria, M., Zurita-Bustamante, E.W.: Active Disturbance Rejection Control of Dynamic Systems: A Flatness Based Approach. Butterworth-Heinemann, Oxford (2018)

    Google Scholar 

  84. Aguilar-Ibañez, C., Sira-Ramirez, H., Acosta, J.Á.: Stability of active disturbance rejection control for uncertain systems: a Lyapunov perspective. Int. J. Robust Nonlinear Control. 27(18), 4541–4553 (2017)

    MathSciNet  MATH  Google Scholar 

  85. Qi, X., Li, J., Xia, Y., Gao, Z.: On the robust stability of active disturbance rejection control for SISO systems. Cir. Syst. Signal Process. 36(1), 65–81 (2017)

    MATH  Google Scholar 

  86. Bai, W., Xue, W., Huang, Y., Fang, H.: On extended state based Kalman filter design for a class of nonlinear time-varying uncertain systems. Sci China Inf Sci 61(4), 042201 (2018)

    MathSciNet  Google Scholar 

  87. Bai, W., Chen, S., Huang, Y., Guo, B.Z., Wu, Z.H.: Observers and observability for uncertain nonlinear systems: a necessary and sufficient condition. Int. J. Robust Nonlinear Control. 29(10), 2960–2977 (2019)

    MathSciNet  MATH  Google Scholar 

  88. Zhang, C., Yang, J., Li, S., Yang, N.: A generalized active disturbance rejection control method for nonlinear uncertain systems subject to additive disturbance. Nonlinear Dyn. 83(4), 2361–2372 (2016)

    MathSciNet  MATH  Google Scholar 

  89. Abdul-Adheem, W.R., Ibraheem, I.K.: Improved sliding mode nonlinear extended state observer based active disturbance rejection control for uncertain systems with unknown total disturbance. Int. J. Adv. Comput. Sci. Appl 7(12), 80–93 (2016)

    Google Scholar 

  90. Zhao, Z.L., Guo, B.Z.: A novel extended state observer for output tracking of MIMO systems with mismatched uncertainty. IEEE Trans. Automat. Control. 63(1), 211–218 (2017)

    MathSciNet  MATH  Google Scholar 

  91. Sun, L., Li, D., Gao, Z., Yang, Z., Zhao, S.: Combined feedforward and model-assisted active disturbance rejection control for non-minimum phase system. ISA Trans. 64, 24–33 (2016)

    Google Scholar 

  92. Li, D.Z., Ding, P., Gao, Z.Q.: Fractional active disturbance rejection control. ISA Trans. 6, 109–119 (2016)

    Google Scholar 

  93. Gao, Z.: Active disturbance rejection control for nonlinear fractional-order systems. Int. J. Robust Nonlinear Control. 26, 876–892 (2016)

    MathSciNet  MATH  Google Scholar 

  94. Ran, M., Wang, Q., Dong, C.: Active disturbance rejection control for uncertain nonaffine-in-control nonlinear systems. IEEE Trans. Automat. Control. 62(11), 5830–5836 (2016)

    MathSciNet  MATH  Google Scholar 

  95. Xue, W.C., Huang, Y.: On performance analysis of ADRC for a class of MIMO lower-triangular nonlinear uncertain system. ISA Trans. 53, 955–962 (2014)

    Google Scholar 

  96. Guo, B.Z., Wu, Z.H.: Output tracking for a class of nonlinear systems with mismatched uncertainties by active disturbance rejection control. Syst. Control Lett. 100, 21–31 (2017)

    MathSciNet  MATH  Google Scholar 

  97. Wu, Z.H., Guo, B.Z.: Approximate decoupling and output tracking for MIMO nonlinear systems with mismatched uncertainties via ADRC approach. J. Franklin Inst. 355(9), 3873–3894 (2018)

    MathSciNet  MATH  Google Scholar 

  98. Castillo, A., García, P., Sanz, R., Albertos, P.: Enhanced extended state observer-based control for systems with mismatched uncertainties and disturbances. ISA Trans. 73, 1–10 (2018)

    Google Scholar 

  99. Chen, S., Huang, Y.: The selection criterion of nominal model in active disturbance rejection control for non-affine uncertain systems. J. Franklin Inst. (2019). https://doi.org/10.1016/j.jfranklin.2019.12.023

    Article  MATH  Google Scholar 

  100. Chen, S., Bai, W., Hu, Y., Huang, Y., Gao, Z.: On the conceptualization of total disturbance and its profound implications. Sci China Inf. Sci. 63(2), 129201 (2020)

    MathSciNet  Google Scholar 

  101. Zheng, Q., Gao, Z.: Predictive active disturbance rejection control for processes with time delay. ISA Trans. 53(4), 873–881 (2014)

    Google Scholar 

  102. Zhao, S., Gao, Z.: Modified active disturbance rejection control for time-delay systems. ISA Trans. 53(4), 882–888 (2014)

    MathSciNet  Google Scholar 

  103. Chen, S., Xue, W., Zhong, S., Huang, Y.: On comparison of modified ADRCs for nonlinear uncertain systems with time delay. Sci. China Inf. Sci. 61(7), 70223 (2018)

    MathSciNet  Google Scholar 

  104. Chen, S., Xue, W., Huang, Y.: Analytical design of active disturbance rejection control for nonlinear uncertain systems with delay. Control Eng. Pract. 84, 323–336 (2019)

    Google Scholar 

  105. Ran, M., Wang, Q., Dong, C., Xie, L.: Active disturbance rejection control for uncertain time-delay nonlinear systems. Automatica 112, 108692 (2020)

    MathSciNet  MATH  Google Scholar 

  106. Sun, J., Yang, J., Li, S., Zheng, W.X.: Sampled-data-based event-triggered active disturbance rejection control for disturbed systems in networked environment. IEEE Trans. Cybern. 99, 1–11 (2017)

    Google Scholar 

  107. Yu, Y., Yuan, Y., Yang, H., Liu, H.: Nonlinear sampled-data ESO-based active disturbance rejection control for networked control systems with actuator saturation. Nonlinear Dyn. 95(2), 1415–1434 (2019)

    Google Scholar 

  108. Chen, S., Chen, Z.: On active disturbance rejection control for a class of uncertain systems with measurement uncertainty. IEEE Trans. Ind. Electron. (2020). https://doi.org/10.1109/TIE.2020.2970623

    Article  Google Scholar 

  109. Guo, B.Z., Wu, Z.H., Zhou, H.C.: Active disturbance rejection control approach to output-feedback stabilization of a class of uncertain nonlinear systems subject to stochastic disturbance. IEEE Trans. Automat. Control. 61, 1613–1618 (2016)

    MathSciNet  MATH  Google Scholar 

  110. Wu, Z.H., Guo, B.Z.: On convergence of active disturbance rejection control for a class of uncertain stochastic nonlinear systems. Int. J. Control. 92(5), 1103–1116 (2019)

    MathSciNet  MATH  Google Scholar 

  111. Guo, B.Z., Wu, Z.H.: Active disturbance rejection control approach to output feedback stabilization of lower triangular nonlinear systems with stochastic uncertainty. Int. J. Robust Nonlinear Control. 27, 2773–2797 (2017)

    MathSciNet  MATH  Google Scholar 

  112. Wu, Z.H., Guo, B.Z.: Active disturbance rejection control to MIMO nonlinear systems with stochastic uncertainties: approximate decoupling and output-feedback stabilisation. Int. J. Control. 93(6), 1408–1427 (2020)

    MathSciNet  MATH  Google Scholar 

  113. Wu, Z.H., Guo, B.Z.: Extended state observer for MIMO nonlinear systems with stochastic uncertainties. Int. J. Control. 93(3), 424–436 (2020)

    MathSciNet  MATH  Google Scholar 

  114. Guo, B.Z., Jin, F.F.: The active disturbance rejection and sliding mode control approach to the stabilization of Euler–Bernoulli beam equation with boundary input disturbance. Automatica 49, 2911–2918 (2013)

    MathSciNet  MATH  Google Scholar 

  115. Li, Y., Xu, G., Han, Z.: Stabilization of an Euler-Bernoulli beam system with a tip mass subject to non-uniform bounded disturbance. IMA J. Math. Control Inform. 34(4), 1239–1254 (2016)

    MathSciNet  MATH  Google Scholar 

  116. Li, Y., Xu, G.: Stabilization of an Euler-Bernoulli beam with a tip mass under the unknown boundary external disturbances. J. Syst. Sci. Complex. 30(4), 803–817 (2017)

    MathSciNet  MATH  Google Scholar 

  117. Guo, B.Z., Jin, F.F.: Sliding mode and active disturbance rejection control to stabilization of one-dimensional anti-stable wave equations subject to disturbance in boundary input. IEEE Trans. Automat. Control. 58, 1269–1274 (2013)

    MathSciNet  MATH  Google Scholar 

  118. Guo, B.Z., Liu, J.J.: Sliding mode control and active disturbance rejection control to the stabilization of one-dimensional schrödinger equation subject to boundary control matched disturbance. Int. J. Robust Nonlinear Control. 24, 2194–2212 (2014)

    MATH  Google Scholar 

  119. Guo, Y.P., Wang, J.M.: The active disturbance rejection control of the rotating disk-beam system with boundary input disturbances. Int. J. Control. 89(11), 2322–2335 (2016)

    MathSciNet  MATH  Google Scholar 

  120. Zhang, Y.L., Zhu, M., Li, D., Wang, J.M.: ADRC Dynamic Stabilization of an Unstable Heat Equation. IEEE Trans. Automat. Control. (2019). https://doi.org/10.1109/TAC.2019.2957690

    Article  Google Scholar 

  121. Guo, B.Z., Zhou, H.C.: The active disturbance rejection control to stabilization for multi-dimensional wave equation with boundary control matched disturbance. IEEE Trans. Automat. Control. 60, 143–157 (2015)

    MathSciNet  MATH  Google Scholar 

  122. Guo, B.Z., Zhou, H.C.: Active disturbance rejection control for rejecting boundary disturbance from multi-dimensional Kirchhoff plate via boundary control. SIAM J. Control Optim. 52, 2800–2830 (2014)

    MathSciNet  MATH  Google Scholar 

  123. Guo, B.Z., Jin, F.F.: Output feedback stabilization for one-dimensional wave equation subject to boundary disturbance. IEEE Trans. Automat. Control. 60, 824–830 (2015)

    MathSciNet  MATH  Google Scholar 

  124. Guo, B.Z., Zhou, H.C.: Output feedback stabilization for multi-dimensional Kirchhoff plate with general corrupted boundary observation. Eur. J. Control. 28, 38–48 (2016)

    MathSciNet  MATH  Google Scholar 

  125. Feng, H., Guo, B.Z.: Distributed disturbance estimator and application to stabilization for multi-dimensional wave equation with corrupted boundary observation. Automatica 66, 25–33 (2016)

    MathSciNet  MATH  Google Scholar 

  126. Feng, H., Guo, B.Z.: A new active disturbance rejection control to output feedback stabilization for a one-dimensional anti-stable wave equation with disturbance. IEEE Trans. Automat. Control. 62, 3774–3787 (2017)

    MathSciNet  MATH  Google Scholar 

  127. Zhou, H.C.: Output-based disturbance rejection control for 1-D anti-stable Schrödinger equation with boundary input matched unknown disturbance. Int. J. Robust Nonlinear Control. 27, 4686–4705 (2017)

    MATH  Google Scholar 

  128. Zhou, H.C., Feng, H.: Disturbance estimator based output feedback exponential stabilization for Euler-Bernoulli beam equation with boundary control. Automatica 91, 79–88 (2018)

    MathSciNet  MATH  Google Scholar 

  129. Zhou, H.C., Guo, B.Z.: Performance output tracking for one-dimensional wave equation subject to unmatched general disturbance and non-collocated control. Eur. J. Control. 39, 39–52 (2018)

    MathSciNet  MATH  Google Scholar 

  130. Zhou, H.C., Guo, B.Z., Xiang, S.H.: Performance output tracking for multidimensional heat equation subject to unmatched disturbance and noncollocated control. IEEE Trans. Automat. Control. 65, 1940–1955 (2020)

    MathSciNet  Google Scholar 

  131. Zhou, H.C., Lv, C.W., Guo, B.Z., Chen, Y.Q.: Mittag-Leffler stabilization for an unstable time fractional anomalous diffusion equation with boundary control matched disturbance. Int. J. Robust Nonlinear Control. 29, 4384–4401 (2019)

    MathSciNet  MATH  Google Scholar 

  132. Lv, C.W., Zhou, H.C., Deng, F.Q.: Mittag–Leffler stabilization of an unstable time fractional hyperbolic PDEs. IEEE Access 7, 102580–102588 (2019)

    Google Scholar 

  133. Isidori, A.: Nonlinear Control Systems: An introduction, 3rd edn. Springer, Berlin (1995)

    MATH  Google Scholar 

  134. Cheng, D., Hu, X., Shen, T.: Analysis and Design of Nonlinear Control Systems. Springer, Berlin (2010)

    MATH  Google Scholar 

  135. Huang, Z.L., Zhu, W.Q., Ni, Y.Q., Ko, J.M.: Stochastic averaging of strongly non-linear oscillators under bounded noise excitation. J. Sound Vib. 254, 245–267 (2002)

    MathSciNet  MATH  Google Scholar 

  136. Hu, F., Chen, L.C., Zhu, W.Q.: Stationary response of strongly non-linear oscillator with fractional derivative damping under bounded noise excitation. Int. J. Non-Linear Mech. 47, 1081–1087 (2012)

    Google Scholar 

  137. Huang, Z.L., Zhu, W.Q.: Stochastic averaging of quasi-integrable Hamiltonian systems under bounded noise excitations. Prob. Eng. Mech. 19, 219–228 (2004)

    Google Scholar 

  138. Zhou, H.C., Weiss, G.: Output feedback exponential stabilization for one-dimensional unstable wave equations with boundary control matched disturbance. SIAM J. Control Optim. 56, 4098–4129 (2018)

    MathSciNet  MATH  Google Scholar 

  139. Weiss, G.: Admissibility of unbounded control operators. SIAM J. Control Optim. 27, 527–545 (1989)

    MathSciNet  MATH  Google Scholar 

  140. Zhou, H.C., Guo, B.Z.: Stabilization of ODE with hyperbolic equation actuator subject to boundary controlmatched disturbance. Int. J. Control. 92, 12–26 (2019)

    MATH  Google Scholar 

  141. Chen, G.: Energy decay estimates and exact boundary value controllability for the wave equation in a boundaed domain. J. Math. pures et appl. 58, 249–273 (1979)

    Google Scholar 

  142. Zhou, H.C., Guo, B.Z.: Boundary feedback stabilization for an unstable time fractional reaction diffusion equations. SIAM J. Control Optim. 56, 75–101 (2018)

    MathSciNet  MATH  Google Scholar 

  143. Ahrens, J.H., Khalil, H.K.: High-gain observers in the presence of measurement noise: A switched-gain approach. Automatica 45, 936–943 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61903087, 61803386, 61873260, 61733008 and 11801077) and the Natural Science Foundation of Guangdong Province (Grant Nos. 2018A030310357 and 2018A1660005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua-Cheng Zhou or Feiqi Deng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, ZH., Zhou, HC., Guo, BZ. et al. Review and new theoretical perspectives on active disturbance rejection control for uncertain finite-dimensional and infinite-dimensional systems. Nonlinear Dyn 101, 935–959 (2020). https://doi.org/10.1007/s11071-020-05845-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05845-7

Keywords

Navigation