Skip to main content
Log in

The numerical modeling of rotor–stator rubbing in rotating machinery: a comprehensive review

  • Review
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The rotor–stator rubbing in rotating machinery generated as a consequence of rotor imbalance, shaft misalignment, and casing deformation is a potential threat to the machinery that seriously affects its performance. Timely prediction and correction of the rubbing are essential for the prolonged life of the machinery and its overall performance. A complete understanding of the system behavior during interaction is a great challenge for researchers working in the field of rotor dynamics. Rubbing phenomena involve complex contact nonlinearities and associated thermal effects, which makes the analysis very difficult. Research works in this field are started with the analysis of simple two degree-of-freedom models and now dealing with extensive three-dimensional finite element models. This paper provides a comprehensive review of different numerical models of rotor–stator rubbing with respect to their ability in simulating the actual response characteristics. A detailed description of contact modeling is also presented with the advantages and disadvantages of each model. Different methods for solving the numerical models are briefly explained. In addition, a commentary on different emerging techniques of rub identification is also reported. Finally, some informed recommendations on future directions are made by stating what lacks in the current research activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Muszynska, A.: Rotordynamics, 1st edn. CRC Press, Boca Raton, FL (2005)

    MATH  Google Scholar 

  2. Nguyen-Schäfer, H.: Rotordynamics of Automotive Turbochargers, 2nd edn. Springer, Basel (2015)

    Google Scholar 

  3. Andrés, L.S., Rivadeneira, J.C., Chinta, M., Gjika, K., La Rue, G.: Nonlinear rotordynamics of automotive turbochargers: predictions and comparisons to test data. J. Eng. Gas Turbines Power 129(2), 488–493 (2007)

    Google Scholar 

  4. Walton, J.F., Heshmat, H., Tomaszewski, M.J.: Testing of a small turbocharger/turbojet sized simulator rotor supported on foil bearings. J. Eng. Gas Turbines Power 130(3), 035 001.1–7 (2008)

  5. Holt, C., San Andrés, L., Sahay, S., Tang, P., La Rue, G., Gjika, K.: Test response and nonlinear analysis of a turbocharger supported on floating ring bearings. J. Vib. Acoust. 127(2), 107–115 (2005)

    Google Scholar 

  6. Kirk, R.G., Alsaeed, A.A., Gunter, E.J.: Stability analysis of a high-speed automotive turbocharger. Tribol. Trans. 50(3), 427–434 (2007)

    Google Scholar 

  7. Kirk, R.G., Kornhauser, A.A., Sterling, J., Alsaeed, A.: Turbocharger on-engine experimental vibration testing. J. Vib. Control 16(3), 343–355 (2010)

    Google Scholar 

  8. Ying, G., Meng, G., Jing, J.: Turbocharger rotor dynamics with foundation excitation. Arch. Appl. Mech. 79(4), 287–299 (2009)

    MATH  Google Scholar 

  9. Keller, R.A., Scharrer, J., Mosher, P.: Performance turbocharger failure analysis—causes and solutions. Tech. rep., 942530, SAE Technical Paper (1994)

  10. Bonnett, A.H., Soukup, G.C.: Cause and analysis of stator and rotor failures in three-phase squirrel-cage induction motors. IEEE Trans. Ind. Appl. 28(4), 921–937 (1992)

    Google Scholar 

  11. Siddique, A., Yadava, G., Singh, B.: A review of stator fault monitoring techniques of induction motors. IEEE Trans. Energy Convers. 20(1), 106–114 (2005)

    Google Scholar 

  12. Ma, H., Yin, F., Guo, Y., Tai, X., Wen, B.: A review on dynamic characteristics of blade-casing rubbing. Nonlinear Dyn. 84(2), 437–472 (2016)

    Google Scholar 

  13. Muszynska, A.: Rotor-to-stationary element rub-related vibration phenomena in rotating machinery: literature survey. Shock Vib. Digest 21(3), 3–11 (1989)

    Google Scholar 

  14. Leong, M.S.: Field experiences of gas turbines vibrations—a review and case studies. J. Syst. Des. Dyn. 2(1), 24–35 (2008)

    Google Scholar 

  15. Choi, Y.S., Lee, K.H.: Investigation of blade failure in a gas turbine. J. Mech. Sci. Technol. 24(10), 1969–1974 (2010)

    Google Scholar 

  16. Ma, Y., Martinez-Vazquez, P., Baniotopoulos, C.: Wind turbine tower collapse cases: a historical overview. Proc. Inst. Civ. Eng. Struct. Build. 172(8), 547–555 (2019)

    Google Scholar 

  17. Christie, C.A.: Task14-Engine windmilling imbalance loads. Tech. rep., FR Doc. 96-16960, Aviation Rulemaking Advisory Committee, Federal Aviation Administration (1996)

  18. John, H.R., Francis, H.M., Louts, M.T., Isabel, A.B., William R.H.: Aircraft accident report: national Airlines, Inc. DC-10-10, N60NA, near Albuquerque, New Mexico, November 3, 1973. Tech. rep., NTSB-AAR-75-2, National Transportation Safety Board (1975)

  19. ATSB: In-flight engine failure: Sydney, Boeing Company 747-438, VH-OJM, 03 February 2007. Tech. rep., 200700356, Australian Transport Safety Bureau (2008)

  20. Christopher, A.H., Robert, L.S., Bella Dinh-Zarr, T., Earl F.W.: Safety recommendation report: Preventing catastrophic failure of Pratt & Whitney Canada JT15D-5 engines following birdstrike or foreign object ingestion. Tech. rep., ASR-17-003, National Transportation Safety Board (2017)

  21. Fan, L.S., Tai, Y.C., Muller, R.S.: IC-processed electrostatic micromotors. Sens. Actuators 20(1–2), 41–47 (1989)

    Google Scholar 

  22. Tavrow, L.S., Bart, S.F., Lang, J.H.: Operational characteristics of microfabricated electric motors. Sens. Actuators A Phys. 35(1), 33–44 (1992)

    Google Scholar 

  23. Spadaccini, C.M., Zhang, X., Cadou, C.P., Miki, N., Waitz, I.A.: Preliminary development of a hydrocarbon-fueled catalytic micro-combustor. Sens. Actuators A Phys. 103(1–2), 219–224 (2003)

    Google Scholar 

  24. Lewis, R., Coolidge, C.J., Schroeder, P.J., Bright, V.M., Lee, Y.: Fabrication, assembly, and testing of a MEMS-enabled micro gas compressor for a 4:1 pressure ratio. Sens. Actuators A Phys. 190, 84–89 (2013)

    Google Scholar 

  25. Zhang, W.M., Meng, G.: Stability, bifurcation and chaos of a high-speed rub-impact rotor system in MEMS. Sens. Actuators A Phys. 127(1), 163–178 (2006)

    Google Scholar 

  26. Yu-Chong, T., Muller, R.S.: Frictional study of IC-processed micromotors. Sens. Actuators A Phys. 21(1–3), 180–183 (1990)

    Google Scholar 

  27. Zhang, W.M., Meng, G., Chen, D., Zhou, J.B., Chen, J.Y.: Nonlinear dynamics of a rub-impact micro-rotor system with scale-dependent friction model. J. Sound Vib. 309(3–5), 756–777 (2008)

    Google Scholar 

  28. Miki, N., Teo, C., Ho, L., Zhang, X.: Enhancement of rotordynamic performance of high-speed micro-rotors for power MEMS applications by precision deep reactive ion etching. Sens. Actuators A Phys. 104(3), 263–267 (2003)

    Google Scholar 

  29. Fréchette, L.G., Jacobson, S.A., Breuer, K.S., Ehrich, F.F., Ghodssi, R., Khanna, R., Wong, C.W., Zhang, X., Schmidt, M.A., Epstein, A.H.: High-speed microfabricated silicon turbomachinery and fluid film bearings. J. Microelectromech. Syst. 14(1), 141–152 (2005)

    Google Scholar 

  30. Jardine, A.K., Lin, D., Banjevic, D.: A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process. 20(7), 1483–1510 (2006)

    Google Scholar 

  31. Heng, A., Zhang, S., Tan, A.C., Mathew, J.: Rotating machinery prognostics: state of the art, challenges and opportunities. Mech. Syst. Signal Process. 23(3), 724–739 (2009)

    Google Scholar 

  32. Peng, Y., Dong, M., Zuo, M.J.: Current status of machine prognostics in condition-based maintenance: a review. Int. J. Adv. Manuf. Technol. 50(1–4), 297–313 (2010)

    Google Scholar 

  33. Ahmad, R., Kamaruddin, S.: An overview of time-based and condition-based maintenance in industrial application. Comput. Ind. Eng. 63(1), 135–149 (2012)

    Google Scholar 

  34. Tsang, A.H.: Condition-based maintenance: tools and decision making. J. Qual. Maint. Eng. 1(3), 3–17 (1995)

    Google Scholar 

  35. Dimarogonas, A., Sandor, G.: Packing rub effect in rotating machinery. I. A state of the art review. Wear 14(3), 153–170 (1969)

    Google Scholar 

  36. Ahmad, S.: Rotor casing contact phenomenon in rotor dynamics-literature survey. J. Vib. Control 16(9), 1369–1377 (2010)

    Google Scholar 

  37. Jacquet-Richardet, G., Torkhani, M., Cartraud, P., Thouverez, F., Baranger, T.N., Herran, M., Gibert, C., Baguet, S., Almeida, P., Peletan, L.: Rotor to stator contacts in turbomachines. Review and application. Mech. Syst. Signal Process. 40(2), 401–420 (2013)

    Google Scholar 

  38. Newkirk, B.L.: Shaft rubbing. J. Am. Soc. Naval Eng. 39(1), 114–120 (1927)

    Google Scholar 

  39. Taylor, H.: Rubbing shafts above and below resonant speed. Gen. Electr. Tech. Inf. Ser. 16709 (1924)

  40. Dimarogonas, A.: A study of the Newkirk effect in turbomachinery. Wear 28(3), 369–382 (1974)

    Google Scholar 

  41. Choy, F., Padovan, J.: Non-linear transient analysis of rotor-casing rub events. J. Sound Vib. 113(3), 529–545 (1987)

    Google Scholar 

  42. Black, H.F.: Paper 4: Synchronous whirling of a shaft within a radially flexible annulus having small radial clearance. In: Proceedings of the Institution of Mechanical Engineers, Conference Proceedings, vol. 181. SAGE Publications, pp. 65–73 (1966)

  43. Black, H.: Interaction of a whirling rotor with a vibrating stator across a clearance annulus. J. Mech. Eng. Sci. 10(1), 1–12 (1968)

    Google Scholar 

  44. Ehrich, F.F., O’Connor, J.J.: Stator whirl with rotors in bearing clearance. J. Eng. Ind. 89(3), 381–389 (1967)

    Google Scholar 

  45. Yu, J., Muszynska, A., Bently, D.: Dynamic behavior of rotor with full annular rub. Bently Rotor Dynamics Research Corporation, BRDRC Report 7 (1998)

  46. Chu, F., Lu, W.: Stiffening effect of the rotor during the rotor-to-stator rub in a rotating machine. J. Sound Vib. 308(3–5), 758–766 (2007)

    Google Scholar 

  47. Chu, F., Lu, W.: Determination of the rubbing location in a multi-disk rotor system by means of dynamic stiffness identification. J. Sound Vib. 248(2), 235–246 (2001)

    Google Scholar 

  48. Bently, D.E., Goldman, P., Yu, J.J.: Full annular rub in mechanical seals, part II: analytical study. Int. J. Rotat. Mach. 8(5), 329–336 (2002)

    Google Scholar 

  49. Zhang, G.F., Xu, W.N., Xu, B., Zhang, W.: Analytical study of nonlinear synchronous full annular rub motion of flexible rotor–stator system and its dynamic stability. Nonlinear Dyn. 57(4), 579–592 (2009)

    MATH  Google Scholar 

  50. Ehehalt, U., Markert, R.: Instability of unbalance excited synchronous forward whirl at rotor–stator-contact. In: PAMM: Proceedings in Applied Mathematics and Mechanics, vol. 2. Wiley Online Library, pp. 60–61 (2003)

  51. Choi, Y.S.: Investigation on the whirling motion of full annular rotor rub. J. Sound Vib. 258(1), 191–198 (2002)

    Google Scholar 

  52. Bartha, A.R.: Dry friction backward whirl of rotors. Ph.D. thesis, ETH No. 13817, Swiss Federal Institute of Technology Zurich (2000)

  53. Bartha, A.: Dry friction backward whirl of rotors: theory, experiments, results, and recommendations. In: 7th International Symposium on Magnetic Bearings, Zurich, August 23–25 (2000)

  54. Bartha, A.: Dry friction induced backward whirl: theory and experiment. In: Proceedings of 5th IFToMM Conference on Rotor Dynamics, Darmstadt, Germany, September, pp. 756–767 (1998)

  55. Bently, D.E., Yu, J.J., Goldman, P., Muszynska, A.: Full annular rub in mechanical seals, part I: experimental results. Int. J. Rotat. Mach. 8(5), 319–328 (2002)

    Google Scholar 

  56. Jiang, J., Ulbrich, H.: The physical reason and the analytical condition for the onset of dry whip in rotor-to-stator contact systems. J. Vib. Acoust. 127(6), 594–603 (2005)

    Google Scholar 

  57. Ehrich, F.F.: Subharmonic vibration of rotors in bearing clearance. In: Design Engineering Conference and Show, Chicago, III., May 9–12, ASME Paper 66-MD-l (1966)

  58. Bently, D.E.: Forced sub-rotative speed dynamic action of rotating machinery. In: Petroleum Mechanical Engineering Conference, Dallas, Texas, ASME paper No. 74-PET-16 (1974)

  59. Childs, D.W.: Rub-induced parametric excitation in rotors. J. Mech. Des. 101(4), 640–644 (1979)

    Google Scholar 

  60. Childs, D.W.: Fractional-frequency rotor motion due to nonsymmetric clearance effects. J. Eng. Power 104(3), 533–541 (1982)

    Google Scholar 

  61. Ehrich, F.F.: High order subharmonic response of high speed rotors in bearing clearance. J. Vib. Acoust. Stress Reliab. Des. 110(1), 9–16 (1988)

    Google Scholar 

  62. Abuzaid, M.A., Eleshaky, M.E., Zedan, M.G.: Effect of partial rotor-to-stator rub on shaft vibration. J. Mech. Sci. Technol. 23(1), 170–182 (2009)

    Google Scholar 

  63. Chu, F., Lu, W.: Experimental observation of nonlinear vibrations in a rub-impact rotor system. J. Sound Vib. 283(3–5), 621–643 (2005)

    Google Scholar 

  64. Ehrich, F.: Observations of subcritical superharmonic and chaotic response in rotordynamics. J. Vib. Acoust. 114(1), 93–100 (1992)

    Google Scholar 

  65. Ehrich, F.: Some observations of chaotic vibration phenomena in high speed rotordynamics. J. Vib. Acoust. 113(1), 50–57 (1991)

    Google Scholar 

  66. Muszynska, A., Goldman, P.: Chaotic responses of unbalanced rotor/bearing/stator systems with looseness or rubs. Chaos Solitons Fractals 5(9), 1683–1704 (1995)

    Google Scholar 

  67. Gonsalves, D., Neilson, R., Barr, A.: Response of a discontinuously nonlinear rotor system. In: Rotordynamics’ 92, Proceedings of the International Conference on Rotating Machine Dynamics, Hotel des Bains, Venice, April 28–30. Springer, pp. 182–189 (1992)

  68. Goldman, P., Muszynska, A.: Chaotic behavior of rotor/stator systems with rubs. J. Eng. Gas Turbines Power 116(3), 692–701 (1994)

    Google Scholar 

  69. Khanlo, H., Ghayour, M., Ziaei-Rad, S.: Chaotic vibration analysis of rotating, flexible, continuous shaft-disk system with a rub-impact between the disk and the stator. Commun. Nonlinear Sci. Numer. Simul. 16(1), 566–582 (2011)

    Google Scholar 

  70. Gonsalves, D., Neilson, R., Barr, A.: A study of the response of a discontinuously nonlinear rotor system. Nonlinear Dyn. 7(4), 451–470 (1995)

    Google Scholar 

  71. Lin, F., Schoen, M., Korde, U.: Numerical investigation with rub-related vibration in rotating machinery. J. Vib. Control 7(6), 833–848 (2001)

    MATH  Google Scholar 

  72. Karpenko, E.V., Wiercigroch, M., Cartmell, M.P.: Regular and chaotic dynamics of a discontinuously nonlinear rotor system. Chaos Solitons Fractals 13(6), 1231–1242 (2002)

    MATH  Google Scholar 

  73. Chu, F., Zhang, Z.: Bifurcation and chaos in a rub-impact Jeffcott rotor system. J. Sound Vib. 210(1), 1–18 (1998)

    Google Scholar 

  74. Aidanpää, J.O., Lindkvist, G.: Dynamics of a rubbing Jeffcott rotor with three blades. In: Chaos Theory: Modeling, Simulation and Applications, 3rd Chaotic Modeling and Simulation International Conference (CHAOS2010), Chania, Crete, Greece, 1–4 June, pp. 97–104. World Scientific (2011)

  75. Thiery, F., Gustavsson, R., Aidanpää, J.O.: Dynamics of a misaligned Kaplan turbine with blade-to-stator contacts. Int. J. Mech. Sci. 99, 251–261 (2015)

    Google Scholar 

  76. Gustavsson, R.K., Aidanpää, J.O.: Evaluation of impact dynamics and contact forces in a hydropower rotor due to variations in damping and lateral fluid forces. Int. J. Mech. Sci. 51(9–10), 653–661 (2009)

    Google Scholar 

  77. Edwards, S., Lees, A., Friswell, M.: The influence of torsion on rotor/stator contact in rotating machinery. J. Sound Vib. 225(4), 767–778 (1999)

    Google Scholar 

  78. Diangui, H.: Experiment on the characteristics of torsional vibration of rotor-to-stator rub in turbomachinery. Tribol. Int. 33(2), 75–79 (2000)

    Google Scholar 

  79. Dimarogonas, A.: Newkirk effect: thermally induced dynamic instability of high-speed rotors. In: ASME 1973 International Gas Turbine Conference and Products Show, Washington, DC, USA, April 8–12. Paper No. 73-GT-26, American Society of Mechanical Engineers Digital Collection (1973)

  80. Kellenberger, W.: Spiral vibrations due to the seal rings in turbogenerators thermally induced interaction between rotor and stator. J. Mech. Des. 102(1), 177–184 (1980)

    Google Scholar 

  81. Al-bedoor, B.O.: Transient torsional and lateral vibrations of unbalanced rotors with rotor-to-stator rubbing. J. Sound Vib. 229(3), 627–645 (2000)

    Google Scholar 

  82. Zheng-ce, S., Jian-xue, X., Tong, Z., Ning, T.: Study on influence of bending-torsion coupling in an impacting-rub rotor system. Appl. Math. Mech. 24(11), 1316–1323 (2003)

    Google Scholar 

  83. Lu, W., Chu, F.: Radial and torsional vibration characteristics of a rub rotor. Nonlinear Dyn. 76(1), 529–549 (2014)

    MathSciNet  MATH  Google Scholar 

  84. Patel, T.H., Zuo, M.J., Zhao, X.: Nonlinear lateral-torsional coupled motion of a rotor contacting a viscoelastically suspended stator. Nonlinear Dyn. 69(1–2), 325–339 (2012)

    Google Scholar 

  85. Patel, T.H., Darpe, A.K.: Coupled bending-torsional vibration analysis of rotor with rub and crack. J. Sound Vib. 326(3–5), 740–752 (2009)

    Google Scholar 

  86. Mokhtar, M.A., Darpe, A.K., Gupta, K.: Investigations on bending-torsional vibrations of rotor during rotor–stator rub using Lagrange multiplier method. J. Sound Vib. 401, 94–113 (2017)

    Google Scholar 

  87. Mokhtar, M.A., Darpe, A.K., Gupta, K.: Experimental investigations on torsional vibrations of a rotor during a rotor–stator rub. In: Proceedings of the 10th International Conference on Rotor Dynamics—IFToMM, Rio de Janeiro, Brazil, 23–27 September, vol. 3. Springer, pp. 534–544 (2018)

  88. Yang, Y., Ouyang, H., Wu, X., Jin, Y., Yang, Y., Cao, D.: Bending-torsional coupled vibration of a rotor-bearing-system due to blade-casing rub in presence of non-uniform initial gap. Mech. Mach. Theory 140, 170–193 (2019)

    Google Scholar 

  89. Mohiuddin, M., Khulief, Y.: Coupled bending torsional vibration of rotors using finite element. J. Sound Vib. 223(2), 297–316 (1999)

    MATH  Google Scholar 

  90. Muszynska, A.: Thermal/mechanical effect of rotor-to-stator rubs in rotating machinery. In: Proceedings of the 14th Biennial ASME Design Technical Conference on Mechanical Vibration and Noise, Albuquerque, New Mexico, September, vol. 60, pp. 1–6 (1993)

  91. Goldman, P., Muszynska, A.: Rotor-to-stator, rub-related, thermal/mechanical effects in rotating machinery. Chaos Solitons Fractals 5(9), 1579–1601 (1995)

    Google Scholar 

  92. Goldman, P., Muszynska, A., Bently, D.E.: Thermal bending of the rotor due to rotor-to-stator rub. Int. J. Rotat. Mach. 6(2), 91–100 (2000)

    Google Scholar 

  93. Larsson, B.: Heat separation in frictional rotor-seal contact. J. Tribol. 125(3), 600–607 (2003)

    Google Scholar 

  94. Sawicki, J.T., Montilla-Bravo, A., Gosiewski, Z.: Thermomechanical behavior of rotor with rubbing. Int. J. Rotat. Mach. 9(1), 41–47 (2003)

    Google Scholar 

  95. Bachschmid, N., Pennacchi, P., Venini, P.: Spiral vibrations in rotors due to a rub. In: IMechE 7th International Conference on Vibrations in Rotating Machinery, University of Nottinham, UK, September 12–14, pp. 249–258 (2000)

  96. Bachschmid, N., Pennacchi, P., Vania, A.: Modelling of spiral vibrations due to rub in real rotors. In: ISROMAC 10: International symposium on rotating machinery, Honolulu, Oahu, Hawaii, USA, March 7–11, Paper No. ISROMAC10-2004-096, pp. 1–10 (2004)

  97. Bachschmid, N., Pennacchi, P., Vania, A.: Thermally induced vibrations due to rub in real rotors. J. Sound Vib. 299(4–5), 683–719 (2007)

    Google Scholar 

  98. Yong-Wei, T., Jian-Gang, Y.: Research on vibration induced by the coupled heat and force due to rotor-to-stator rub. J. Vib. Control 17(4), 549–566 (2011)

    MathSciNet  MATH  Google Scholar 

  99. Padovan, J., Choy, F.: Nonlinear dynamics of rotor/blade/casing rub interactions. J. Turbomach. 109(4), 527–534 (1987)

    Google Scholar 

  100. Choy, F., Padovan, J., Li, W.: Rub in high performance turbomachinery, modeling, solution methodology and signature analysis. Mech. Syst. Signal Process. 2(2), 113–133 (1988)

    Google Scholar 

  101. Choy, F., Padovan, J., Batur, C.: Rub interactions of flexible casing rotor systems. J. Eng. Gas Turbines Power 111(4), 652–658 (1989)

    Google Scholar 

  102. Choy, F., Padovan, J., Yu, J.: Full rubs, bouncing and quasi chaotic orbits in rotating equipment. J. Frank. Inst. 327(1), 25–47 (1990)

    MATH  Google Scholar 

  103. Jiang, J., Ahrens, J., Ulbrich, H., Scheideler, E.: A contact model of a rotating rubbing blade. In: Proceedings of 5th IFToMM Conference on Rotor Dynamics, Darmstadt, Germany, September, pp. 478–489 (1998)

  104. Li, B., Ma, H., Zeng, J., Guo, X., Wen, B.: Rotating blade-casing rubbing simulation considering casing flexibility. Int. J. Mech. Sci. 148, 118–134 (2018)

    Google Scholar 

  105. Ma, H., Tai, X., Han, Q., Wu, Z., Wang, D., Wen, B.: A revised model for rubbing between rotating blade and elastic casing. J. Sound Vib. 337, 301–320 (2015)

    Google Scholar 

  106. Ma, H., Wang, D., Tai, X., Wen, B.: Vibration response analysis of blade-disk dovetail structure under blade tip rubbing condition. J. Vib. Control 23(2), 252–271 (2017)

    Google Scholar 

  107. Sinha, S.K.: Dynamic characteristics of a flexible bladed-rotor with Coulomb damping due to tip-rub. J. Sound Vib. 273(4–5), 875–919 (2004)

    Google Scholar 

  108. Sinha, S.K.: Non-linear dynamic response of a rotating radial Timoshenko beam with periodic pulse loading at the free-end. Int. J. Non-Linear Mech. 40(1), 113–149 (2005)

    MATH  Google Scholar 

  109. Sinha, S.K.: Combined torsional-bending-axial dynamics of a twisted rotating cantilever Timoshenko beam with contact-impact loads at the free end. J. Appl. Mech. 74(3), 505–522 (2007)

    MATH  Google Scholar 

  110. Lesaffre, N., Sinou, J.J., Thouverez, F.: Contact analysis of a flexible bladed-rotor. Eur. J. Mech. A Solids 26, 541–557 (2007)

    MATH  Google Scholar 

  111. Parent, M.O., Thouverez, F., Chevillot, F.: Whole engine interaction in a bladed rotor-to-stator contact. In: ASME Turbo Expo 2014: Turbine Technical Conference and Exposition,Dusseldorf, Germany, 16–20 June, Paper No. GT2014-25253. American Society of Mechanical Engineers Digital Collection (2014)

  112. Ma, H., Lu, Y., Wu, Z., Tai, X., Wen, B.: Vibration response analysis of a rotational shaft-disk-blade system with blade-tip rubbing. Int. J. Mech. Sci. 107, 110–125 (2016)

    Google Scholar 

  113. Ma, H., Yin, F., Wu, Z., Tai, X., Wen, B.: Nonlinear vibration response analysis of a rotor-blade system with blade-tip rubbing. Nonlinear Dyn. 84(3), 1225–1258 (2016)

    MathSciNet  Google Scholar 

  114. Ma, H., Wu, Z., Tai, X., Li, C., Wen, B.: Nonlinear behavior analysis caused by blade tip rubbing in a rotor-disk-blade system. In: Proceedings of the 9th IFToMM International Conference on Rotor Dynamics, Milan, Mechanisms and Machine Science, vol. 21. Springer, pp. 181–191 (2015)

  115. Ma, H., Tai, X., Niu, H., Song, R.: Numerical research on rub-impact fault in a blade-rotor-casing coupling system. J. Vibroeng. 15(3), 1477–1489 (2013)

    Google Scholar 

  116. Ma, H., Lu, Y., Wu, Z., Tai, X., Li, H., Wen, B.: A new dynamic model of rotor-blade systems. J. Sound Vib. 357, 168–194 (2015)

    Google Scholar 

  117. Ma, H., Yin, F., Tai, X., Wang, D., Wen, B.: Vibration response analysis caused by rubbing between rotating blade and casing. J. Mech. Sci. Technol. 30(5), 1983–1995 (2016)

    Google Scholar 

  118. Yang, Y., Cao, D., Yu, T., Wang, D., Li, C.: Prediction of dynamic characteristics of a dual-rotor system with fixed point rubbing—theoretical analysis and experimental study. Int. J. Mech. Sci. 115, 253–261 (2016)

    Google Scholar 

  119. Wang, N., Jiang, D., Xu, H.: Effects of rub-impact on vibration response of a dual-rotor system-theoretical and experimental investigation. Exp. Tech. 1–13 (2019)

  120. Xu, H., Wang, N., Jiang, D., Han, T., Li, D.: Dynamic characteristics and experimental research of dual-rotor system with rub-impact fault. Shock Vib. 6239281, 2016 (2016)

    Google Scholar 

  121. Wang, N., Jiang, D., Xu, H.: Dynamic characteristics analysis of a dual-rotor system with inter-shaft bearing. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 233(3), 1147–1158 (2019)

    Google Scholar 

  122. Lu, Z., Wang, X., Hou, L., Chen, Y., Liu, X.: Nonlinear response analysis for an aero engine dual-rotor system coupled by the inter-shaft bearing. Arch. Appl. Mech. 89(7), 1275–1288 (2019)

    Google Scholar 

  123. Guo, C.: Study on the recognition of aero-engine blade-casing rubbing fault based on the casing vibration acceleration. Measurement 65, 71–80 (2015)

    Google Scholar 

  124. Hong, J., Li, T., Liang, Z., Zhang, D., Ma, Y.: Research on blade-casing rub-impact mechanism by experiment and simulation in aeroengines. Shock Vib. 2019 (2019)

  125. Gao, T., Cao, S., Hou, L., Hou, Y.: An experimental study on the nonlinear vibration phenomenon of a rotor system subjected to barrel roll flight and coupled rub-impact faults. Measurement 153, 107406 (2020)

    Google Scholar 

  126. Wang, C., Zhang, D., Ma, Y., Liang, Z., Hong, J.: Theoretical and experimental investigation on the sudden unbalance and rub-impact in rotor system caused by blade off. Mech. Syst. Signal Process. 76, 111–135 (2016)

    Google Scholar 

  127. Batailly, A., Legrand, M., Millecamps, A., Cochon, S., Garcin, F.: Redesign of a high-pressure compressor blade accounting for nonlinear structural interactions. J. Eng. Gas Turbines Power 137(2), 022 502.1–8 (2015)

  128. Padova, C., Barton, J., Dunn, M.G., Manwaring, S., Young, G., Adams Jr., M., Adams, M.: Development of an experimental capability to produce controlled blade tip/ shroud rubs at engine speed. J. Turbomach. 127(4), 726–735 (2005)

    Google Scholar 

  129. Padova, C., Dunn, M., Barton, J., Turner, K., Steen, T.: Controlled fan blade tip/shroud rubs at engine conditions. In: ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, Turbo Expo: Power for Land, Sea, and Air, vol. 6: Structures and Dynamics, Parts A and B. American Society of Mechanical Engineers Digital Collection, pp. 951–961 (2011)

  130. Padova, C., Barton, J., Dunn, M.G., Manwaring, S.: Experimental results from controlled blade tip/shroud rubs at engine speed. J. Turbomach. 129(4), 713–723 (2007)

    Google Scholar 

  131. Garza, J.W.: Tip rub induced blade vibrations: experimental and computational results. Ph.D. thesis, The Ohio State University (2006)

  132. Padova, C., Dunn, M.G., Barton, J., Turner, K., Turner, A., DiTommaso, D.: Casing treatment and blade-tip configuration effects on controlled gas turbine blade tip/shroud rubs at engine conditions. J. Turbomach. 133(1) (2011)

  133. Batailly, A., Agrapart, Q., Millecamps, A.: Experimental and numerical simulation of a contact induced rotor/stator interaction inside an aircraft engine high-pressure compressor. In: ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, Seoul, South Korea, 13–17 June, Paper No. GT2016-56718. American Society of Mechanical Engineers Digital Collection (2016)

  134. Batailly, A., Agrapart, Q., Millecamps, A., Brunel, J.F.: Experimental and numerical simulation of a rotor/stator interaction event localized on a single blade within an industrial high-pressure compressor. J. Sound Vib. 375, 308–331 (2016)

    Google Scholar 

  135. Mandard, R., Desplanques, Y., Hauss, G., Fabis, J., Witz, J.F., Meriaux, J.: Mechanisms of incursion accommodation during interaction between a vibrating blade and an abradable coating. Wear 330, 406–418 (2015)

    Google Scholar 

  136. Almeida, P., Gibert, C., Thouverez, F., Leblanc, X., Ousty, J.P.: Experimental analysis of dynamic interaction between a centrifugal compressor and its casing. J. Turbomach. 137(3), 031 008.1–10 (2015)

  137. Strobridge, T.R., Moulder, J.C., Clark, A.F.: Titanium combustion in turbine engines. Tech. rep., Thermophysical Properties Division, National Engineering Laboratory, National Bureau of Standards, Boulder, Colorado 80303 (1979)

  138. Millecamps, A., Brunel, J.F., Garcin, F., Nucci, M., et al.: Influence of thermal effects during blade-casing contact experiments. In: ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, San Diego, California, USA, August 30–September 2, Paper No. DETC2009-86842. American Society of Mechanical Engineers Digital Collection, pp. 855–862 (2009)

  139. Nitschke, S., Wollmann, T., Ebert, C., Behnisch, T., Langkamp, A., Lang, T., Johann, E., Gude, M.: An advanced experimental method and test rig concept for investigating the dynamic blade-tip/casing interactions under engine-like mechanical conditions. Wear 422, 161–166 (2019)

    Google Scholar 

  140. Sutter, G., Philippon, S., Garcin, F.: Dynamic analysis of the interaction between an abradable material and a titanium alloy. Wear 261(5–6), 686–692 (2006)

    Google Scholar 

  141. Sutter, G., Molinari, A., Faure, L., Klepaczko, J., Dudzinski, D.: An experimental study of high speed orthogonal cutting. J. Manuf. Sci. Eng. 120(1), 169–172 (1998)

    Google Scholar 

  142. Cuny, M., Philippon, S., Chevrier, P., Garcin, F.: Experimental measurement of dynamic forces generated during short-duration contacts: application to blade-casing interactions in aircraft engines. Exp. Mech. 54(2), 101–114 (2014)

    Google Scholar 

  143. Mandard, R., Witz, J.F., Boidin, X., Fabis, J., Desplanques, Y., Meriaux, J.: Interacting force estimation during blade/seal rubs. Tribol. Int. 82, 504–513 (2015)

    Google Scholar 

  144. Chen, G.: Characteristics analysis of blade-casing rubbing based on casing vibration acceleration. J. Mech. Sci. Technol. 29(4), 1513–1526 (2015)

    Google Scholar 

  145. Chen, G.: Simulation of casing vibration resulting from blade-casing rubbing and its verifications. J. Sound Vib. 361, 190–209 (2016)

    Google Scholar 

  146. Yu, M., Feng, Z., Huang, J., Zhu, L.: A new characteristic analysis method for aero-engine rotor–stator rubbing. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 232(6), 1120–1133 (2018)

    Google Scholar 

  147. Wang, N., Liu, C., Jiang, D., Behdinan, K.: Casing vibration response prediction of dual-rotor-blade-casing system with blade-casing rubbing. Mech. Syst. Signal Process. 118, 61–77 (2019)

    Google Scholar 

  148. Vania, A., Pennacchi, P., Chatterton, S., Cangioli, F.: Intermittent rub caused by carbonized oil in a steam turbine. In: Proceedings of the 10th IFToMM International Conference on Rotor Dynamics, Mechanisms and Machine Science, vol. 61, pp. 290–304. Springer (2018)

  149. Patel, T., Darpe, A.: Use of full spectrum cascade for rotor rub identification. Adv. Vib. Eng. 8(2), 139–151 (2009)

    Google Scholar 

  150. Patel, T.H., Darpe, A.K.: Vibration response of a cracked rotor in presence of rotor–stator rub. J. Sound Vib. 317(3–5), 841–865 (2008)

    Google Scholar 

  151. Patel, T.H., Darpe, A.K.: Study of coast-up vibration response for rub detection. Mech. Mach. Theory 44(8), 1570–1579 (2009)

    MATH  Google Scholar 

  152. Chipato, E., Shaw, A., Friswell, M.: Frictional effects on the nonlinear dynamics of an overhung rotor. Commun. Nonlinear Sci. Numer. Simul. 78, 104875 (2019)

    Google Scholar 

  153. Hou, L., Chen, H., Chen, Y., Lu, K., Liu, Z.: Bifurcation and stability analysis of a nonlinear rotor system subjected to constant excitation and rub-impact. Mech. Syst. Signal Process. 125, 65–78 (2019)

    Google Scholar 

  154. Kim, Y.B., Noah, S.: Quasi-periodic response and stability analysis for a non-linear Jeffcott rotor. J. Sound Vib. 190(2), 239–253 (1996)

    Google Scholar 

  155. Peletan, L., Baguet, S., Torkhani, M., Jacquet-Richardet, G.: Quasi-periodic harmonic balance method for rubbing self-induced vibrations in rotor–stator dynamics. Nonlinear Dyn. 78(4), 2501–2515 (2014)

    Google Scholar 

  156. Jiang, J.: The analytical solution and the existence condition of dry friction backward whirl in rotor-to-stator contact systems. J. Vib. Acoust. 129(2), 260–264 (2007)

    Google Scholar 

  157. Jiang, J., Shang, Z., Hong, L.: Characteristics of dry friction backward whirl-A self-excited oscillation in rotor-to-stator contact systems. Sci. China Technol. Sci. 53(3), 674–683 (2010)

    MATH  Google Scholar 

  158. Haijun, X., Ling, L., Xiaojun, G., Guoqiang, L.: Dynamic response of a high speed flexible rotor due to sudden large unbalance. In: Proceedings of the 9th IFToMM International Conference on Rotor Dynamics, Mechanisms and Machine Science, vol. 21. Springer, pp. 1977–1990 (2015)

  159. Grāpis, O., Tamužs, V., Ohlson, N.G., Andersons, J.: Overcritical high-speed rotor systems, full annular rub and accident. J. Sound Vib. 290(3–5), 910–927 (2006)

    Google Scholar 

  160. Stallone, M., Gallardo, V., Storace, A., Bach, L., Black, G., Gaffney, E.: Blade loss transient dynamic analysis of turbomachinery. AIAA J. 21(8), 1134–1138 (1983)

    Google Scholar 

  161. Sun, G., Palazzolo, A., Provenza, A., Lawrence, C., Carney, K.: Long duration blade loss simulations including thermal growths for dual-rotor gas turbine engine. J. Sound Vib. 316(1–5), 147–163 (2008)

    Google Scholar 

  162. Kirk, R., Hibner, D.: A note on blade loss dynamics of rotor-bearing systems. J. Eng. Ind. 98(2), 497–503 (1976)

    Google Scholar 

  163. Alam, M., Nelson, H.: A blade loss response spectrum for flexible rotor systems. J. Eng. Gas Turbines Power 107(1), 197–204 (1985)

    Google Scholar 

  164. Cosme, N., Chevrolet, D., Bonini, J., Peseux, B., Cartraud, P.: Prediction of engine loads and damages due to fan blade off event. In: 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Denver, Colorado, April 22–25, Paper No. AIAA-2002-1666 (2002)

  165. Carney, K.S., Lawrence, C., Carney, D.V.: Aircraft engine blade-out dynamics. In: Seventh International LS-DYNA Users Conference. Livermore CA, USA: Livermore Software Technology Corporation, pp. 14–17 (2002)

  166. Husband, J.B.: Developing an efficient FEM structural simulation of a fan blade off test in a turbofan jet engine. Ph.D. thesis, University of Saskatchewan (2007)

  167. Liu, L., Chen, W., Zhao, Z., Luo, G.: Investigation on the dynamic response of aero-engine structures due to fan blade out event through subscale testing. In: 52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, July 25–27, p. 4861 (2016)

  168. Sinha, S.K.: Rotordynamic analysis of asymmetric turbofan rotor due to fan blade-loss event with contact-impact rub loads. J. Sound Vib. 332(9), 2253–2283 (2013)

    Google Scholar 

  169. He, Q., Xuan, H., Liu, L., Hong, W., Wu, R.: Perforation of aero-engine fan casing by a single rotating blade. Aerosp. Sci. Technol. 25(1), 234–241 (2013)

    Google Scholar 

  170. Kivanc, S., Steve, K., Azim, E.: Development of a generic gas turbine engine fan blade-out full-fan rig model. Tech. rep., DOT/FAA/TC-14/43, Federal Aviation Administration, William J. Hughes Technical Center, Aviation Research Division Atlantic City International Airport (2015)

  171. Yu, P., Zhang, D., Ma, Y., Hong, J.: Dynamic modeling and vibration characteristics analysis of the aero-engine dual-rotor system with fan blade out. Mech. Syst. Signal Process. 106, 158–175 (2018)

    Google Scholar 

  172. Wang, N., Liu, C., Jiang, D.: Prediction of transient vibration response of dual-rotor-blade-casing system with blade off. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 233(14), 5164–5176 (2019)

    Google Scholar 

  173. Gilardi, G., Sharf, I.: Literature survey of contact dynamics modelling. Mech. Mach. Theory 37(10), 1213–1239 (2002)

    MathSciNet  MATH  Google Scholar 

  174. Mohammadi, S.: Discontinuum Mechanics: Using Finite and Discrete Elements, vol. 1. WIT Press, Southampton (2003)

    MATH  Google Scholar 

  175. Roques, S., Legrand, M., Cartraud, P., Stoisser, C., Pierre, C.: Modeling of a rotor speed transient response with radial rubbing. J. Sound Vib. 329(5), 527–546 (2010)

    Google Scholar 

  176. Torkhani, M., May, L., Voinis, P.: Light, medium and heavy partial rubs during speed transients of rotating machines: numerical simulation and experimental observation. Mech. Syst. Signal Process. 29, 45–66 (2012)

    Google Scholar 

  177. Legrand, M., Batailly, A., Magnain, B., Cartraud, P., Pierre, C.: Full three-dimensional investigation of structural contact interactions in turbomachines. J. Sound Vib. 331(11), 2578–2601 (2012)

    Google Scholar 

  178. Choi, Y.S.: On the contact of partial rotor rub with experimental observations. KSME Int. J. 15(12), 1630–1638 (2001)

    Google Scholar 

  179. Jiang, J., Ulbrich, H.: Stability analysis of sliding whirl in a nonlinear Jeffcott rotor with cross-coupling stiffness coefficients. Nonlinear Dyn. 24(3), 269–283 (2001)

    MathSciNet  MATH  Google Scholar 

  180. Jiang, J.: Determination of the global responses characteristics of a piecewise smooth dynamical system with contact. Nonlinear Dyn. 57(3), 351–361 (2009)

    MATH  Google Scholar 

  181. Tannous, M., Cartraud, P., Torkhani, M., Dureisseix, D.: Assessment of 3D modeling for rotor–stator contact simulations. J. Sound Vib. 353, 327–343 (2015)

    Google Scholar 

  182. Carpenter, N.J., Taylor, R.L., Katona, M.G.: Lagrange constraints for transient finite element surface contact. Int. J. Numer. Methods Eng. 32(1), 103–128 (1991)

    MATH  Google Scholar 

  183. Legrand, M., Pierre, C., Peseux, B.: Structural modal interaction of a four degree-of-freedom bladed disk and casing model. J. Comput. Nonlinear Dyn. 5(4), 041,013.1–9 (2010)

  184. Batailly, A., Meingast, M.B., Legrand, M., Ousty, J.P.: Rotor–stator interaction scenarios for the centrifugal compressor of a helicopter engine. In: ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Portland, Oregon, USA, August 4–7, Paper No: DETC2013-12211. American Society of Mechanical Engineers Digital Collection (2013)

  185. Legrand, M., Pierre, C., Cartraud, P., Lombard, J.P.: Two-dimensional modeling of an aircraft engine structural bladed disk-casing modal interaction. J. Sound Vib. 319(1–2), 366–391 (2009)

    Google Scholar 

  186. Batailly, A., Meingast, M., Legrand, M.: Unilateral contact induced blade/casing vibratory interactions in impellers: analysis for rigid casings. J. Sound Vib. 337, 244–262 (2015)

    Google Scholar 

  187. Batailly, A., Legrand, M., Millecamps, A., Garcin, F.: Conjectural bifurcation analysis of the contact-induced vibratory response of an aircraft engine blade. J. Sound Vib. 348, 239–262 (2015)

    Google Scholar 

  188. Mokhtar, M.A., Darpe, A.K., Gupta, K.: Investigation of rotor stator rub phenomenon considering pure sticking condition. Proc. Eng. 173, 1531–1537 (2017)

    Google Scholar 

  189. Mokhtar, M.A., Darpe, A.K., Gupta, K.: Analysis of stator vibration response for the diagnosis of rub in a coupled rotor–stator system. Int. J. Mech. Sci. 144, 392–406 (2018)

    Google Scholar 

  190. Simo, J.C., Laursen, T.: An augmented Lagrangian treatment of contact problems involving friction. Comput. Struct. 42(1), 97–116 (1992)

    MathSciNet  MATH  Google Scholar 

  191. Ma, H., Shi, C., Han, Q., Wen, B.: Fixed-point rubbing fault characteristic analysis of a rotor system based on contact theory. Mech. Syst. Signal Process. 38(1), 137–153 (2013)

    Google Scholar 

  192. Ma, H., Zhao, Q., Zhao, X., Han, Q., Wen, B.: Dynamic characteristics analysis of a rotor–stator system under different rubbing forms. Appl. Math. Model. 39(8), 2392–2408 (2015)

    MATH  Google Scholar 

  193. Cao, J., Ma, C., Jiang, Z., Liu, S.: Nonlinear dynamic analysis of fractional order rub-impact rotor system. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1443–1463 (2011)

    Google Scholar 

  194. Sun, Z., Xu, J., Zhou, T.: Analysis on complicated characteristics of a high-speed rotor system with rub-impact. Mech. Mach. Theory 37(7), 659–672 (2002)

    MATH  Google Scholar 

  195. Isaksson, J., Frid, A.: Analysis of dynamical behaviour of a rotor with deflection limiters. Acta Mech. 133(1–4), 1–11 (1999)

    MATH  Google Scholar 

  196. Dai, X., Jin, Z., Zhang, X.: Dynamic behavior of the full rotorstop rubbing: numerical simulation and experimental verification. J. Sound Vib. 251(5), 807–822 (2002)

    Google Scholar 

  197. Dai, X., Zhang, X., Jin, X.: The partial and full rubbing of a flywheel rotor-bearing-stop system. Int. J. Mech. Sci. 43(2), 505–519 (2001)

    MATH  Google Scholar 

  198. Feng, Z., Zhang, X.Z.: Rubbing phenomena in rotor–stator contact. Chaos Solitons Fractals 14(2), 257–267 (2002)

    MATH  Google Scholar 

  199. Han, Q., Zhang, Z., Wen, B.: Periodic motions of a dual-disc rotor system with rub-impact at fixed limiter. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 222(10), 1935–1946 (2008)

    Google Scholar 

  200. Choi, Y.S., Noah, S.T.: Nonlinear steady-state response of a rotor-support system. J. Vib. Acoust. Stress Reliab. Des. 109(3), 255–261 (1987)

    Google Scholar 

  201. Praveen Krishna, I., Padmanabhan, C.: Experimental and numerical investigations on rotor–stator rub. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 232(18), 3200–3212 (2018)

    Google Scholar 

  202. Parent, M.O., Thouverez, F., Chevillot, F.: 3D interaction in bladed rotor-to-stator contact. In: Proceedings of the 9th International Conference on Structural Dynamics, EURODYN 2014, Porto, Portugal, Paper No. hal-01223447 (2014)

  203. Yuan, H., Kou, H.: Contact-impact analysis of a rotating geometric nonlinear plate under thermal shock. J. Eng. Math. 90(1), 119–140 (2015)

    MathSciNet  MATH  Google Scholar 

  204. Lawrence, C., Carney, K., Gallardo, V.: A study of fan stage/casing interaction models. Tech. rep., NASA/TM-2003-212215, NASA Glenn Research Center; Cleveland, OH, United States (2003)

  205. Petrov, E.: Multiharmonic analysis of nonlinear whole engine dynamics with bladed disc-casing rubbing contacts. In: ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, Copenhagen, Denmark, June 11–15, Paper No: GT2012-68474. American Society of Mechanical Engineers Digital Collection, pp. 1181–1191 (2012)

  206. Petrov, E.: Analysis of bifurcations in multiharmonic analysis of nonlinear forced vibrations of gas turbine engine structures with friction and gaps. J. Eng. Gas Turbines Power 138(10), 102 502.1–11 (2016)

  207. Karpenko, E.V., Pavlovskaia, E.E., Wiercigroch, M.: Bifurcation analysis of a preloaded Jeffcott rotor. Chaos Solitons Fractals 15(2), 407–416 (2003)

    MATH  Google Scholar 

  208. Popprath, S., Ecker, H.: Nonlinear dynamics of a rotor contacting an elastically suspended stator. J. Sound Vib. 308(3–5), 767–784 (2007)

    Google Scholar 

  209. Ma, Y., Cao, C., Zhang, D., Liang, Z., Hong, J.: Constraint mechanical model and investigation for rub-impact in aero-engine system. In: ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, Montreal, Quebec, Canada, June 15–19, Paper No: GT2015-42929. American Society of Mechanical Engineers Digital Collection (2015)

  210. Xiang, L., Hu, A., Hou, L., Xiong, Y., Xing, J.: Nonlinear coupled dynamics of an asymmetric double-disc rotor-bearing system under rub-impact and oil-film forces. Appl. Math. Model. 40(7–8), 4505–4523 (2016)

    MATH  Google Scholar 

  211. Liu, Y., Li, Q.L., Chen, Y.Z., Wen, B.C.: Dynamic analysis of rubbing rotor system based on Hertz contact theory. In: Advanced Materials Research, vol. 479. Trans Tech Publications Ltd., pp. 743–747 (2012)

  212. Lankarani, H., Nikravesh, P.: A contact force model with hysteresis damping for impact analysis of multibody systems. J. Mech. Des. 112(3), 369–376 (1990)

    Google Scholar 

  213. Yang, Y., Cao, D., Wang, D., Jiang, G.: Fixed-point rubbing characteristic analysis of a dual-rotor system based on the Lankarani-Nikravesh model. Mech. Mach. Theory 103, 202–221 (2016)

    Google Scholar 

  214. Yang, Y., Cao, D., Xu, Y.: Rubbing analysis of a nonlinear rotor system with surface coatings. Int. J. Non-Linear Mech. 84, 105–115 (2016)

    Google Scholar 

  215. Cao, D., Yang, Y., Chen, H., Wang, D., Jiang, G., Li, C., Wei, J., Zhao, K.: A novel contact force model for the impact analysis of structures with coating and its experimental verification. Mech. Syst. Signal Process. 70, 1056–1072 (2016)

    Google Scholar 

  216. Lahriri, S., Weber, H.I., Santos, I.F., Hartmann, H.: Rotor–stator contact dynamics using a non-ideal drive-theoretical and experimental aspects. J. Sound Vib. 331(20), 4518–4536 (2012)

    Google Scholar 

  217. Turner, K., Adams, M., Dunn, M.: Simulation of engine blade tip-rub induced vibration. In: ASME Turbo Expo 2005: Power for Land, Sea, and Air, Reno, Nevada, USA, June 6–9, Paper No: GT2005-68217. American Society of Mechanical Engineers Digital Collection, pp. 391–396 (2005)

  218. Turner, K.E., Dunn, M., Padova, C.: Airfoil deflection characteristics during rub events. J. Turbomach. 134(1), 011 018.1–8 (2012)

  219. Li, C., She, H., Tang, Q., Wen, B.: Research on the FE and semi-analytical solution with the blade-casing rub-impact dynamical system. J. Vibroeng. 17(7), 3438–3452 (2015)

    Google Scholar 

  220. Roques, S., Legrand, M., Stoisser, C.M., Cartraud, P., Pierre, C., et al.: Development of beam-to-beam contact detection algorithms for rotor–stator rubbing applications. In: ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Las Vegas, Nevada, USA, September 4–7, Paper No. DETC2007-34625. American Society of Mechanical Engineers Digital Collection, pp. 1187–1194 (2007)

  221. Kou, H., Du, J., Liang, M., Zhu, L., Zeng, L., Zhu, Z., Zhang, F.: Nonlinear characteristics of contact-induced vibrations of the rotating variable thickness plate under large deformations. Eur. J. Mech. A Solids 77, 103801 (2019)

    MathSciNet  MATH  Google Scholar 

  222. Batailly, A., Legrand, M., Pierre, C.: Full 3D rotor/stator interaction simulations in aircraft engines with time-dependent angular speed. In: ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, Seoul, South Korea, June 13–17, Paper No: GT2016-56715. American Society of Mechanical Engineers Digital Collection (2016)

  223. Batailly, A., Legrand, M., Pierre, C.: Full three-dimensional rotor/stator interaction simulations in aircraft engines with time-dependent angular speed. J. Eng. Gas Turbines Power 139(3), 031 202.1–7 (2017)

  224. Ma, H., Yang, T., Liu, S., Sun, Q., Wen, B.: Effects of twist angle on rubbing induced vibration responses of blade. In: Proceedings of the 10th International Conference on Rotor Dynamics-IFToMM, Mechanisms and Machine Science, vol. 62. Springer, pp. 193–204 (2018)

  225. Sun, Q., Ma, H., Zhu, Y., Han, Q., Wen, B.: Comparison of rubbing induced vibration responses using varying-thickness-twisted shell and solid-element blade models. Mech. Syst. Signal Process. 108, 1–20 (2018)

    Google Scholar 

  226. Sun, J., Arteaga, I.L., Kari, L.: General shell model for a rotating pretwisted blade. J. Sound Vib. 332(22), 5804–5820 (2013)

    Google Scholar 

  227. Santos, D.B.V., Bandeira, A.A.: Numerical modeling of contact problems with the finite element method utilizing a B-spline surface for contact surface smoothing. Lat. Am. J. Solids Struct. 15(8) (2018)

  228. El-Abbasi, N., Meguid, S., Czekanski, A.: On the modelling of smooth contact surfaces using cubic splines. Int. J. Numer. Methods Eng. 50(4), 953–967 (2001)

    MATH  Google Scholar 

  229. Chamoret, D., Saillard, P., Rassineux, A., Bergheau, J.M.: New smoothing procedures in contact mechanics. J. Comput. Appl. Math. 168(1–2), 107–116 (2004)

    MathSciNet  MATH  Google Scholar 

  230. Temizer, I., Wriggers, P., Hughes, T.: Contact treatment in isogeometric analysis with NURBS. Comput. Methods Appl. Mech. Eng. 200(9–12), 1100–1112 (2011)

    MathSciNet  MATH  Google Scholar 

  231. Thorin, A., Guérin, N., Legrand, M.: Rotor–stator interaction: formulation, reduction and simulation of a nonsmooth thermo-elastic model. In: 17th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Maui, United States, December, Paper No. hal-01871945 (2017)

  232. Thorin, A., Guérin, N., Legrand, M., Thouverez, F., Almeida, P.: Nonsmooth thermoelastic simulations of blade–casing contact interactions. J. Eng. Gas Turbines Power 141(2), 022 502.1–7 (2019)

  233. Faik, S., Witteman, H.: Modeling of impact dynamics: A literature survey. In: 2000 International ADAMS User Conference, vol. 80. Citeseer (2000)

  234. Simo, J.C., Hughes, T.J.: Computational Inelasticity, vol. 7. Springer, Berlin (2006)

    MATH  Google Scholar 

  235. Legrand, M., Pierre, C.: Numerical investigation of abradable coating wear through plastic constitutive law: application to aircraft engines. In: ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, San Diego, California, USA, August 30–September 2, Paper No: DETC2009-87669. American Society of Mechanical Engineers Digital Collection, pp. 907–916 (2009)

  236. Batailly, A., Legrand, M., Millecamps, A., Garcin, F.: Numerical-experimental comparison in the simulation of rotor/stator interaction through blade-tip/abradable coating contact. J. Eng. Gas Turbines Power 134(8), 082 504.1–11 (2012)

  237. Legrand, M., Batailly, A., Pierre, C.: Numerical investigation of abradable coating removal in aircraft engines through plastic constitutive law. J. Comput. Nonlinear Dyn. 7(1), 011 010.1–11 (2012)

  238. Kascak, A.F., Tomko, J.J.: Effects of different rub models on simulated rotor dynamics. Tech. rep., NASA-E-1801, National Aeronautics and Space Administration Cleveland OH Lewis Research Center (1984)

  239. Salvat, N., Batailly, A., Legrand, M.: Modeling of abradable coating removal in aircraft engines through delay differential equations. J. Eng. Gas Turbines Power 135(10), 102 102.1–7 (2013)

  240. Olgac, N., Zalluhoglu, U., Kammer, A.S.: On blade/casing rub problems in turbomachinery: an efficient delayed differential equation approach. J. Sound Vib. 333(24), 6662–6675 (2014)

    Google Scholar 

  241. Kammer, A.S., Olgac, N.: Blade/casing rub interaction in turbomachinery: structural parameters’ influence on stability. J. Propuls. Power 32(1), 929–938 (2016)

    Google Scholar 

  242. Kim, Y., Noah, S.: Bifurcation analysis for a modified Jeffcott rotor with bearing clearances. Nonlinear Dyn. 1(3), 221–241 (1990)

    Google Scholar 

  243. Moreira, R.V., Paiva, A.: The influence of friction in rotor–stator contact nonlinear dynamics. In: Proceedings of the 10th International Conference on Rotor Dynamics—IFToMM, Mechanisms and Machine Science, vol. 61. Springer, pp. 428–441 (2018)

  244. Hong, J., Yu, P., Zhang, D., Ma, Y.: Nonlinear dynamic analysis using the complex nonlinear modes for a rotor system with an additional constraint due to rub-impact. Mech. Syst. Signal Process. 116, 443–461 (2019)

    Google Scholar 

  245. Shang, Z., Jiang, J., Hong, L.: The global responses characteristics of a rotor/stator rubbing system with dry friction effects. J. Sound Vib. 330(10), 2150–2160 (2011)

    Google Scholar 

  246. Yu, J.J., Goldman, P., Bently, D.E.: Rotor/seal experimental and analytical study on full annular rub. In: ASME Turbo Expo 2000: Power for Land, Sea, and Air, Munich, Germany, May 8–11, Paper No: 2000-GT-0389. American Society of Mechanical Engineers Digital Collection (2000)

  247. Goldman, P., Muszynska, A.: Dynamic effects in mechanical structures with gaps and impacting: order and chaos. J. Vib. Acoust. 116(4), 541–547 (1994)

    Google Scholar 

  248. Chu, F., Zhang, Z.: Periodic, quasi-periodic and chaotic vibrations of a rub-impact rotor system supported on oil film bearings. Int. J. Eng. Sci. 35(10–11), 963–973 (1997)

    MATH  Google Scholar 

  249. Balaji, N.N., Krishna, I.P.: Coupled simulation of rotor systems supported by journal bearings. In: Proceedings of the 10th International Conference on Rotor Dynamics—IFToMM, Mechanisms and Machine Science, vol. 60. Springer, pp. 411–421 (2018)

  250. Chang-Jian, C.W., et al.: Couple stress fluid improve rub-impact rotor-bearing system—nonlinear dynamic analysis. Appl. Math. Model. 34(7), 1763–1778 (2010)

    MathSciNet  MATH  Google Scholar 

  251. Liu, C., Zhang, Y., Han, Q.K., Wen, B.: Experimental research on nonlinear vibration characteristics of rotor bearing system with coupling fault of rub-impact and oil whirl. In: ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Long Beach, California, USA, September 24–28, Paper No: DETC2005-85287. American Society of Mechanical Engineers Digital Collection, pp. 1155–1160 (2005)

  252. Chivens, D.R., Nelson, H.: The natural frequencies and critical speeds of a rotating, flexible shaft-disk system. J. Eng. Ind. 97(3), 881–886 (1975)

    Google Scholar 

  253. Sumwalt, R., Hart, C., Dinh-Zarr, T.: Uncontained engine failure and subsequent fire. Tech. rep., Accident Report NTSB/AAR-18/01, National Transportation Safety Board, Washington DC (2018)

  254. Flowers, G.T., Wu, F.S.: A study of the influence of bearing clearance on lateral coupled shaft/disk rotordynamics. J. Eng. Gas Turbines Power 115(2), 279–286 (1993)

    Google Scholar 

  255. Flowers, G.T., Wu, F.: Disk/shaft vibration induced by bearing clearance effects: analysis and experiment. J. Vib. Acoust. 118(2), 204–208 (1996)

    Google Scholar 

  256. Kumar, D.S., Sujatha, C., Ganesan, N.: Disc flexibility effects in rotor bearing systems. Comput. Struct. 62(4), 715–719 (1997)

    Google Scholar 

  257. Flowers, G.T., Ryan, S.G.: Development of a set of equations for incorporating disk flexibility effects in rotordynamical analyses. In: ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition, Orlando, Florida, USA, June 3–6, Paper No: 91-GT-075. American Society of Mechanical Engineers Digital Collection (1991)

  258. Sun, C., Chen, Y., Hou, L.: Steady-state response characteristics of a dual-rotor system induced by rub-impact. Nonlinear Dyn. 86(1), 91–105 (2016)

    Google Scholar 

  259. Gao, P., Hou, L., Yang, R., Chen, Y.: Local defect modelling and nonlinear dynamic analysis for the inter-shaft bearing in a dual-rotor system. Appl. Math. Model. 68, 29–47 (2019)

    MathSciNet  MATH  Google Scholar 

  260. Han, Q.K., Luo, H.T., Wen, B.C.: Simulations of a dual-rotor system with local rub-impacts based on rigid-flexible multi-body model. In: Key Engineering Materials, vol. 413. Trans Tech Publ, pp. 677–682 (2009)

  261. Lesaffre, N., Sinou, J.J., Thouverez, F.: Model and stability analysis of a flexible bladed rotor. Int. J. Rotat. Mach. 63756, 2006 (2006)

    MATH  Google Scholar 

  262. Varanis, M., Mereles, A., Silva, A., Balthazar, J.M., Tusset, Â.M.: Rubbing effect analysis in a continuous rotor model. In: Proceedings of the 10th International Conference on Rotor Dynamics—IFToMM, Mechanisms and Machine Science, vol. 62. Springer, pp. 387–399 (2018)

  263. Kim, Y., Noah, S., Choi, Y.: Periodic response of multi-disk rotors with bearing clearances. J. Sound Vib. 144(3), 381–395 (1991)

    Google Scholar 

  264. Kim, Y., Noah, S.: Steady-state analysis of a nonlinear rotor-housing system. J. Eng. Gas Turbines Power 113(4), 550–556 (1991)

    Google Scholar 

  265. Yao, H., Han, Q., Li, L., Wen, B.: Detection of rubbing location in rotor system by super-harmonic responses. J. Mech. Sci. Technol. 26(8), 2431–2437 (2012)

    Google Scholar 

  266. Zhao, Q., Yao, H., Xu, Q., Wen, B.: Prediction method for steady-state response of local rubbing blade-rotor systems. J. Mech. Sci. Technol. 29(4), 1537–1545 (2015)

    Google Scholar 

  267. Jianping, J., Guang, M., Yi, S., SongBo, X.: On the non-linear dynamic behavior of a rotor-bearing system. J. Sound Vib. 274(3–5), 1031–1044 (2004)

    Google Scholar 

  268. Pennacchi, P., Bachschmid, N., Tanzi, E.: Light and short arc rubs in rotating machines: experimental tests and modelling. Mech. Syst. Signal Process. 23(7), 2205–2227 (2009)

    Google Scholar 

  269. Sun, C., Chen, Y., Hou, L.: Nonlinear dynamical behaviors of a complicated dual-rotor aero-engine with rub-impact. Arch. Appl. Mech. 88(8), 1305–1324 (2018)

    Google Scholar 

  270. Parent, M.O., Thouverez, F.: Phenomenological model for stability analysis of bladed rotor-to-stator contacts. In: International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, United States, April, Paper No. hal-01537643 (2016)

  271. Nelson, H., McVaugh, J.: The dynamics of rotor-bearing systems using finite elements. J. Eng. Ind. 98(2), 593–600 (1976)

    Google Scholar 

  272. Salvat, N., Batailly, A., Legrand, M.: Two-dimensional modeling of unilateral contact-induced shaft precessional motions in bladed-disk/casing systems. Int. J. Non-Linear Mech. 78, 90–104 (2016)

    Google Scholar 

  273. Krishna, I.P., Padmanabhan, C.: Improved reduced order solution techniques for nonlinear systems with localized nonlinearities. Nonlinear Dyn. 63(4), 561–586 (2011)

    MathSciNet  Google Scholar 

  274. Craig Jr., R.R., Bampton, M.C.: Coupling of substructures for dynamic analyses. AIAA J. 6(7), 1313–1319 (1968)

    MATH  Google Scholar 

  275. Nelson, H., Meacham, W., Fleming, D., Kascak, A.: Nonlinear analysis of rotor-bearing systems using component mode synthesis. J. Eng. Gas Turbines Power 105(3), 606–614 (1983)

    Google Scholar 

  276. Glasgow, D., Nelson, H.: Stability analysis of rotor-bearing systems using component mode synthesis. J. Mech. Des. 102(2), 352–359 (1980)

    Google Scholar 

  277. Jin, Y., Lu, K., Huang, C., Hou, L., Chen, Y.: Nonlinear dynamic analysis of a complex dual rotor-bearing system based on a novel model reduction method. Appl. Math. Model. 75, 553–571 (2019)

    MathSciNet  MATH  Google Scholar 

  278. Prabith, K., Krishna, I.P.: A modified model reduction technique for the dynamic analysis of rotor–stator rub. In: Proceedings of the 10th IFToMM International Conference on Rotor Dynamics, Mechanisms and Machine Science, vol. 62. Springer, pp. 400–411 (2018)

  279. Petrov, E.: A method for use of cyclic symmetry properties in analysis of nonlinear multiharmonic vibrations of bladed discs. In: Turbo Expo: Power for Land, Sea, and Air, Atlanta, Georgia, USA, June 16–19, Paper No: GT2003-38480, pp. 235–245 (2003)

  280. Bachschmid, N., Pennacchi, P.E.L., Vania, A.T.: Rotor to stator rub causing spiral vibrations: Modelling and validation on experimental data of real rotating machine. In: 8th International Conference on Vibrations in Rotating Machinery, University of Wales, Swansea, UK, September 7–9. IMechE, pp. 671–680 (2004)

  281. Bachschmid, N., Pennacchi, P., Vania, A.: Identification of multiple faults in rotor systems. J. Sound Vib. 254(2), 327–366 (2002)

    Google Scholar 

  282. Pennacchi, P., Vania, A.: Analysis of rotor-to-stator rub in a large steam turbogenerator. Int. J. Rotat. Mach. 90631, 2007 (2007)

    Google Scholar 

  283. Wang, L., Li, S.M., Tian, G., Li, J.Y.: Simulation of frictional thermal effect during blade-to-case full annular rub. In: Applied Mechanics and Materials, vol. 743. Trans Tech Publ, pp. 79–84 (2015)

  284. Pennacchi, P., Cangioli, F., Vania, A., Chatterton, S.: Numerical modeling of spiral vibrations caused by the presence of brush seals. In: Proceedings of the 10th International Conference on Rotor Dynamics–IFToMM, Mechanisms and Machine Science, vol. 60. Springer, pp. 449–470 (2018)

  285. Newmark, N.M.: A method of computation for structural dynamics. J. Eng. Mech. Div. 85(3), 67–94 (1959)

    Google Scholar 

  286. Chung, J., Hulbert, G.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. J. Appl. Mech. 60(2), 371–375 (1993)

    MathSciNet  MATH  Google Scholar 

  287. Kadapa, C., Dettmer, W., Perić, D.: On the advantages of using the first-order generalised-alpha scheme for structural dynamic problems. Comput. Struct. 193, 226–238 (2017)

    Google Scholar 

  288. Hilber, H.M., Hughes, T.J., Taylor, R.L.: Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq. Eng. Struct. Dyn. 5(3), 283–292 (1977)

    Google Scholar 

  289. Urabe, M., Reiter, A.: Numerical computation of nonlinear forced oscillations by Galerkin’s procedure. J. Math. Anal. Appl. 14(1), 107–140 (1966)

    MathSciNet  MATH  Google Scholar 

  290. Cameron, T., Griffin, J.H.: An alternating frequency/time domain method for calculating the steady-state response of nonlinear dynamic systems. J. Appl. Mech. 56, 149–154 (1989)

    MathSciNet  MATH  Google Scholar 

  291. Von Groll, G., Ewins, D.J.: The harmonic balance method with arc-length continuation in rotor/stator contact problems. J. Sound Vib. 241(2), 223–233 (2001)

    Google Scholar 

  292. Sanliturk, K., Ewins, D.: Modelling two-dimensional friction contact and its application using harmonic balance method. J. Sound Vib. 193(2), 511–523 (1996)

    MATH  Google Scholar 

  293. Guskov, M., Sinou, J.J., Thouverez, F.: Multi-dimensional harmonic balance applied to rotor dynamics. In: ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Las Vegas, Nevada, USA, September 4–7, Paper No: DETC2007-34792. American Society of Mechanical Engineers, pp. 1243–1249 (2007)

  294. Hou, L., Chen, Y., Fu, Y., Chen, H., Lu, Z., Liu, Z.: Application of the HB-AFT method to the primary resonance analysis of a dual-rotor system. Nonlinear Dyn. 88(4), 2531–2551 (2017)

    Google Scholar 

  295. Chua, L., Ushida, A.: Algorithms for computing almost periodic steady-state response of nonlinear systems to multiple input frequencies. IEEE Trans. Circuits Syst. 28(10), 953–971 (1981)

    MathSciNet  MATH  Google Scholar 

  296. Kim, Y., Choi, S.K.: A multiple harmonic balance method for the internal resonant vibration of a non-linear Jeffcott rotor. J. Sound Vib. 208(5), 745–761 (1997)

    Google Scholar 

  297. Ju, R., Fan, W., Zhu, W., Huang, J.: A modified two-timescale incremental harmonic balance method for steady-state quasi-periodic responses of nonlinear systems. J. Comput. Nonlinear Dyn. 12(5), 051 007.1–12 (2017)

  298. Guskov, M., Thouverez, F.: Harmonic balance-based approach for quasi-periodic motions and stability analysis. J. Vib. Acoust. 134(3), (2012)

  299. Rook, T.: An alternate method to the alternating time-frequency method. Nonlinear Dyn. 27(4), 327–339 (2002)

    MathSciNet  MATH  Google Scholar 

  300. Prabith, K., Krishna, I.: A time variational method for the approximate solution of nonlinear systems undergoing multiple-frequency excitations. J. Comput. Nonlinear Dyn. 15(3), 031 006.1–11 (2020)

  301. Yamamura, K.: Simple algorithms for tracing solution curves. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 40(8), 537–541 (1993)

    MathSciNet  MATH  Google Scholar 

  302. Padmanabhan, C., Singh, R.: Dynamics of a piecewise non-linear system subject to dual harmonic excitation using parametric continuation. J. Sound Vib. 184(5), 767–799 (1995)

    MATH  Google Scholar 

  303. Padmanabhan, C., Singh, R.: Analysis of periodically excited non-linear systems by a parametric continuation technique. J. Sound Vib. 184(1), 35–58 (1995)

    Google Scholar 

  304. Petrov, E.: Method for sensitivity analysis of resonance forced response of bladed disks with nonlinear contact interfaces. J. Eng. for Gas Turbines Power 131(2), 022 510.1–9 (2009)

  305. Petrov, E.P.: Direct parametric analysis of resonance regimes for nonlinear vibrations of bladed disks. J. Turbomach. 129(3), 495–502 (2007)

    Google Scholar 

  306. Burriel-Valencia, J., Puche-Panadero, R., Martinez-Roman, J., Sapena-Bano, A., Pineda-Sanchez, M.: Short-frequency Fourier transform for fault diagnosis of induction machines working in transient regime. IEEE Trans. Instrum. Meas. 66(3), 432–440 (2017)

    Google Scholar 

  307. Yan, R., Gao, R.X., Chen, X.: Wavelets for fault diagnosis of rotary machines: a review with applications. Signal Process. 96, 1–15 (2014)

    Google Scholar 

  308. Lei, Y., Lin, J., He, Z., Zuo, M.J.: A review on empirical mode decomposition in fault diagnosis of rotating machinery. Mech. Syst. Signal Process. 35(1–2), 108–126 (2013)

    Google Scholar 

  309. Cheng, J., Yang, Y., Yang, Y.: A rotating machinery fault diagnosis method based on local mean decomposition. Digital Signal Process. 22(2), 356–366 (2012)

    MathSciNet  Google Scholar 

  310. Wang, Y., Markert, R., Xiang, J., Zheng, W.: Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system. Mech. Syst. Signal Process. 60, 243–251 (2015)

    Google Scholar 

  311. Lee, S.M., Choi, Y.S.: Fault diagnosis of partial rub and looseness in rotating machinery using Hilbert–Huang transform. J. Mech. Sci. Technol. 22(11), 2151–2162 (2008)

    Google Scholar 

  312. Peng, Z., Peter, W.T., Chu, F.: An improved Hilbert-Huang transform and its application in vibration signal analysis. J. Sound Vib. 286(1–2), 187–205 (2005)

    Google Scholar 

  313. Peng, Z., Peter, W.T., Chu, F.: A comparison study of improved Hilbert–Huang transform and wavelet transform: application to fault diagnosis for rolling bearing. Mech. Syst. Signal Process. 19(5), 974–988 (2005)

    Google Scholar 

  314. Chandra, N.H., Sekhar, A.: Fault detection in rotor bearing systems using time frequency techniques. Mech. Syst. Signal Process. 72, 105–133 (2016)

    Google Scholar 

  315. Feng, Z., Liang, M., Chu, F.: Recent advances in time-frequency analysis methods for machinery fault diagnosis: a review with application examples. Mech. Syst. Signal Process. 38(1), 165–205 (2013)

    Google Scholar 

  316. Yang, L., Chen, X., Wang, S.: Mechanism of fast time-varying vibration for rotor–stator contact system: with application to fault diagnosis. J. Vib. Acoust. 140(1) (2018)

  317. Wang, S., Chen, X., Wang, Y., Cai, G., Ding, B., Zhang, X.: Nonlinear squeezing time-frequency transform for weak signal detection. Signal Process. 113, 195–210 (2015)

    Google Scholar 

  318. Yang, L., Chen, X., Wang, S., Zuo, H.: Rub-impact detection of rotor systems using time-frequency techniques. In: ASME 2016 International Mechanical Engineering Congress and Exposition, Phoenix, Arizona, USA, November 11–17, Paper No: IMECE2016-65412. American Society of Mechanical Engineers Digital Collection (2016)

  319. Yu, K., Ma, H., Han, H., Zeng, J., Li, H., Li, X., Xu, Z., Wen, B.: Second order multi-synchrosqueezing transform for rub-impact detection of rotor systems. Mech. Mach. Theory 140, 321–349 (2019)

    Google Scholar 

  320. Daubechies, I., Lu, J., Wu, H.T.: Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool. Appl. Comput. Harmonic Anal. 30(2), 243–261 (2011)

    MathSciNet  MATH  Google Scholar 

  321. Chen, S., Yang, Y., Peng, Z., Wang, S., Zhang, W., Chen, X.: Detection of rub-impact fault for rotor–stator systems: a novel method based on adaptive chirp mode decomposition. J. Sound Vib. 440, 83–99 (2019)

    Google Scholar 

  322. Skoblar, A.: Rotor–stator partial rub detection based on Teager-Huang transform. In: Proceedings of the 10th International Conference on Rotor Dynamics—IFToMM, Mechanisms and Machine Science, vol. 2. Springer, pp. 252–264 (2018)

  323. Liu, S.K., Tang, G.J., Pang, B.: Rotor local rubbing fault feature analysis based on Teager–Huang transform. In: Advanced Materials Research, vol. 989. Trans Tech Publ, pp. 3244–3247 (2014)

  324. Yang, W., Tavner, P.: Empirical mode decomposition, an adaptive approach for interpreting shaft vibratory signals of large rotating machinery. J. Sound Vib. 321(3–5), 1144–1170 (2009)

    Google Scholar 

  325. Wang, Y., He, Z., Zi, Y.: A comparative study on the local mean decomposition and empirical mode decomposition and their applications to rotating machinery health diagnosis. J. Vib. Acoust. 132(2) (2010)

  326. Liu, D., Xiao, Z., Hu, X., Zhang, C., Malik, O.: Feature extraction of rotor fault based on EEMD and curve code. Measurement 135, 712–724 (2019)

    Google Scholar 

  327. Lei, Y., He, Z., Zi, Y.: Application of the EEMD method to rotor fault diagnosis of rotating machinery. Mech. Syst. Signal Process. 23(4), 1327–1338 (2009)

    Google Scholar 

  328. Lei, Y., Zuo, M.J.: Fault diagnosis of rotating machinery using an improved HHT based on EEMD and sensitive IMFs. Meas. Sci. Technol. 20(12), 125701 (2009)

    Google Scholar 

  329. Gilles, J.: Empirical wavelet transform. IEEE Trans. Signal Process. 61(16), 3999–4010 (2013)

    MathSciNet  MATH  Google Scholar 

  330. Zheng, J., Pan, H., Yang, S., Cheng, J.: Adaptive parameterless empirical wavelet transform based time-frequency analysis method and its application to rotor rubbing fault diagnosis. Signal Process. 130, 305–314 (2017)

    Google Scholar 

  331. Zhu, X., Hou, D., Zhou, P., Han, Z., Yuan, Y., Zhou, W., Yin, Q.: Rotor fault diagnosis using a convolutional neural network with symmetrized dot pattern images. Measurement 138, 526–535 (2019)

    Google Scholar 

  332. Ngui, W.K., Leong, M.S., Shapiai, M.I., Lim, M.H.: Blade fault diagnosis using artificial neural network. Int. J. Appl. Eng. Res. 12(4), 519–526 (2017)

    Google Scholar 

  333. Wang, L.H., Zhao, X.P., Wu, J.X., Xie, Y.Y., Zhang, Y.H.: Motor fault diagnosis based on short-time Fourier transform and convolutional neural network. Chin. J. Mech. Eng. 30(6), 1357–1368 (2017)

    Google Scholar 

  334. Pandarakone, S.E., Gunasekaran, S., Mizuno, Y., Nakamura, H.: Application of Naive Bayes classifier theorem in detecting induction motor bearing failure. In: 2018 XIII International Conference on Electrical Machines (ICEM), Alexandroupoli. IEEE, pp. 1761–1767 (2018)

  335. Lu, Y., Meng, F., Li, Y.: Research on rub impact fault diagnosis method of rotating machinery based on wavelet packet and support vector machine. In: 2009 International Conference on Measuring Technology and Mechatronics Automation, Zhangjiajie, Hunan, vol. 1. IEEE, pp. 707–710 (2009)

  336. Liu, R., Yang, B., Zio, E., Chen, X.: Artificial intelligence for fault diagnosis of rotating machinery: a review. Mech. Syst. Signal Process. 108, 33–47 (2018)

    Google Scholar 

  337. Sampath, S., Singh, R.: An integrated fault diagnostics model using genetic algorithm and neural networks. J. Eng. Gas Turbines Power 128(1), 49–56 (2004)

    Google Scholar 

  338. Lei, Y., Jia, F., Lin, J., Xing, S., Ding, S.X.: An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data. IEEE Trans. Ind. Electron. 63(5), 3137–3147 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. R. Praveen Krishna.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabith, K., Krishna, I.R.P. The numerical modeling of rotor–stator rubbing in rotating machinery: a comprehensive review. Nonlinear Dyn 101, 1317–1363 (2020). https://doi.org/10.1007/s11071-020-05832-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05832-y

Keywords

Navigation