Skip to main content
Log in

Stochastic response analysis of multi-degree-of-freedom vibro-impact system undergoing Markovian jump

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The paper treats stationary response of a stochastically excited multi-degree-of-freedom (multi-DOF) vibro-impact system undergoing Markovian jump. The vibro-impact system with sudden abrupt changes in substructures or external excitations is modeled as a continuous-discrete Markovian jump system, which is essentially different from the traditional vibro-impact model. It is demonstrated that the random jump factors switch between a finite number of modes. This salient feature allows us to identify this type of dynamic behaviors as response of hybrid vibro-impact systems undergoing Markovian jump. Utilizing a two-step approximate technique, we can reduce the considered multi-DOF hybrid system to one-dimensional averaged Itô equation of the form of system’s total energy. The approximate analytical solution of the associated Fokker–Planck–Kolmogorov (FPK) equation of system’s energy is derived to predict the stationary response of original hybrid systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hess, D.P., Soom, A., Kim, C.H.: Normal vibrations and friction at a Hertzian contact under random excitation: theory and experiments. J. Sound Vib. 153(3), 491–508 (1992)

    MATH  Google Scholar 

  2. Hess, D.P., Soom, A.: Normal vibrations and friction at a Hertzian contact under random excitation: perturbation solution. J. Sound Vib. 164(2), 317–326 (1993)

    MATH  Google Scholar 

  3. Lin, S.Q., Bapat, C.N.: Estimation of clearances and impact forces using vibro-impact response: random excitation. J. Sound Vib. 163(3), 407–421 (1993)

    MATH  Google Scholar 

  4. Dimentberg, M.F., Iourtchenko, D.V.: Random vibrations with impacts: a review. Nonlinear Dyn. 36(2–4), 229–254 (2004)

    MathSciNet  MATH  Google Scholar 

  5. Wang, D., Xu, W., Gu, X., Yang, Y.: Stationary response analysis of vibro-impact system with a unilateral nonzero offset barrier and viscoelastic damping under random excitations. Nonlinear Dyn. 86(2), 891–909 (2016)

    Google Scholar 

  6. Liu, D., Li, M., Li, J.: Probabilistic response and analysis for a vibro-impact system driven by real noise. Nonlinear Dyn. 91(2), 1261–1273 (2018)

    Google Scholar 

  7. Gu, X.D., Deng, Z.C.: Dynamical analysis of vibro-impact capsule system with Hertzian contact model and random perturbation excitations. Nonlinear Dyn. 92(4), 1781–1789 (2018)

    Google Scholar 

  8. Nayak, P.R.: Contact vibrations. J. Sound Vib. 22, 297–322 (1972)

    MATH  Google Scholar 

  9. Goldsmith, W.: Impact. Edward Arnold, London (1960)

    MATH  Google Scholar 

  10. Zhuravlev, V.F.: A method for analyzing vibration-impact systems by means of special functions. Mech. Solids 11(2), 23–27 (1976)

    MathSciNet  Google Scholar 

  11. Dimentberg, M.F.: Statistical Dynamics of Nonlinear and Time-Varying Systems. Wiley, New York (1988)

    MATH  Google Scholar 

  12. Dimentberg, M.F., Haenisch, H.G.: Pseudo-linear vibro-impact system with a secondary structure: response to a white-noise excitation. J. Appl. Mech. 65(3), 772–774 (1998)

    Google Scholar 

  13. Iourtchenko, D.V., Mo, E., Naess, A.: Response probability density functions of strongly non-linear systems by the path integration method. Int. J. Non-Linear Mech. 41(5), 693–705 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Rong, H., Wang, X., Xu, W., Fang, T.: Resonant response of a non-linear vibro-impact system to combined deterministic harmonic and random excitations. Int. J. Non-Linear Mech. 45(5), 474–481 (2010)

    Google Scholar 

  15. Metrikyn, V.S.: On the theory of vibro-impact devices with randomly varying parameters [in Russian]. Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika 13, 4 (1970)

    Google Scholar 

  16. Iourtchenko, D.V., Dimentberg, M.F.: Energy balance for random vibrations of piecewise-conservative systems. J. Sound Vib. 248(5), 913–923 (2001)

    Google Scholar 

  17. Yang, G., Xu, W., Jia, W., He, M.: Random vibrations of Rayleigh vibroimpact oscillator under Parametric Poisson white noise. Commun. Nonlinear Sci. Numer. Simul. 33, 19–29 (2016)

    MathSciNet  Google Scholar 

  18. Feng, Q., He, H.: Modeling of the mean Poincare map on a class of random impact oscillators. Eur. J. Mech. A/Solids 22, 267–281 (2003)

    MathSciNet  MATH  Google Scholar 

  19. Zhu, W.Q., Yang, Y.Q.: Stochastic averaging of quasi non-integrable Hamiltonian systems. J. Appl. Mech. 64, 157–164 (1997)

    MathSciNet  MATH  Google Scholar 

  20. Xu, M.: First-passage failure of linear oscillator with non-classical inelastic impact. Appl. Math. Model. 54, 284–297 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Wu, Y., Zhu, W.Q.: Stationary response of multi-degree-of-freedom vibro-impact systems to Poisson white noises. Phys. Lett. A 372(5), 623–630 (2008)

    MATH  Google Scholar 

  22. Yang, G., Xu, W., Feng, J., Gu, X.: Response analysis of Rayleigh–Van der Pol vibroimpact system with inelastic impact under two parametric white-noise excitations. Nonlinear Dyn. 82(4), 1797–1810 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Huang, Z.L., Liu, Z.H., Zhu, W.Q.: Stationary response of multi-degree-of-freedom vibro-impact systems under white noise excitations. J. Sound Vib. 275(1), 223–240 (2004)

    Google Scholar 

  24. Feng, J., Xu, W., Rong, H., Wang, R.: Stochastic responses of Duffing-Van der Pol vibro-impact system under additive and multiplicative random excitations. Int. J. Non-Linear Mech. 44(1), 51–57 (2009)

    MATH  Google Scholar 

  25. Tran, D.: Effects of dynamic excitations due to very fast trains on the instability of railway rock ballast. Adv. Struct. Eng. 12(3), 399–409 (2009)

    Google Scholar 

  26. Field Jr., R.V., Epp, D.S.: Development and calibration of a stochastic dynamics model for the design of a MEMS inertial switch. Sens. Actuators A 134(1), 109–118 (2007)

    Google Scholar 

  27. Zhu, H.T.: Response of a vibro-impact Duffing system with a randomly varying damping term. Int. J. Non-Linear Mech. 65, 53–62 (2014)

    Google Scholar 

  28. Lima, R., Soize, C., Sampaio, R.: Robust design optimization with an uncertain model of a nonlinear vibro-impact electro-mechanical system. Commun. Nonlinear Sci. Numer. Simul. 23(1–3), 263–273 (2015)

    Google Scholar 

  29. Ren, Z., Xu, W., Zhang, S.: Reliability analysis of nonlinear vibro-impact systems with both randomly fluctuating restoring and damping terms. Commun. Nonlinear Sci. Numer. Simul. 82, 105087 (2020)

    MathSciNet  Google Scholar 

  30. Costa, O.L.V., Fragoso, M.D., Marques, R.P.: Discrete-Time Markov Jump Linear Systems. Springer, Berlin (2006)

    MATH  Google Scholar 

  31. Wu, S.T.: The Theory of Stochastic Jump System and Its Application. Science Press, Beijing (2007)

    Google Scholar 

  32. Metzner, P., Schütte, C., Vanden-Eijnden, E.: Transition path theory for Markov jump processes. Multiscale Model. Simul. 7(3), 1192–1219 (2009)

    MathSciNet  MATH  Google Scholar 

  33. Krasosvkii, N.N., Lidskii, E.A.: Analytical design of controllers in systems with random attributes I–III. Autom. Remote Control 22, 1021–1025, 1141–1146, 1289–1294 (1961)

  34. Kats, I.I., Krasosvkii, N.N.: On the stability of systems with random parameters. J. Appl. Math. Mech. 24(5), 1225–1246 (1960)

    Google Scholar 

  35. De Souza, C.E.: Robust stability and stabilization of uncertain discrete-time Markovian jump linear systems. IEEE Trans. Autom. Control 51(5), 836–841 (2006)

    MathSciNet  MATH  Google Scholar 

  36. Shi, P., Li, F.: A survey on Markovian jump systems: modeling and design. Int. J. Control Autom. Syst. 13(1), 1–16 (2015)

    MathSciNet  Google Scholar 

  37. Kushner, H.: Stochastic Stability and Control. Academic Press, New York (1967)

    MATH  Google Scholar 

  38. Mariton, M.: Almost sure and moment stability of jump linear systems. Syst. Control Lett. 11, 393–397 (1988)

    MathSciNet  MATH  Google Scholar 

  39. Sworder, D.: Feedback control of a class linear systems with jump parameters. IEEE Trans. Autom. Control 14, 9–14 (1969)

    MathSciNet  Google Scholar 

  40. Huan, R.H., Hu, R.C., Pu, D., Zhu, W.Q.: Optimal vibration control of a class of nonlinear stochastic systems with Markovian jump. Shock Vib. Article ID 9641075, 9 p (2016)

  41. Huan, R.H., Zhu, W.Q., Ma, F., Ying, Z.G.: Stationary response of a class of nonlinear stochastic systems undergoing Markovian jump. J. Appl. Mech. 82(5), 051008 (2015)

    Google Scholar 

  42. Hu, R.C., Dong, H., Gu, X.D., Deng, Z.C.: Feedback stabilization of multi-DOF nonlinear stochastic Markovian jump systems. Int. J. Robust Nonlinear Control 29(16), 5654–5667 (2019)

    MathSciNet  MATH  Google Scholar 

  43. Skorokhod, A.V.: Asymptotic Methods of the Theory of Stochastic Differential Equations. American Mathematical Society, Providence (2009)

    Google Scholar 

  44. Khasminskii, R.Z.: On the averaging principle for Ito stochastic differential equations. Kibernetka 3, 260–279 (1968)

    Google Scholar 

  45. Kushner, H.J.: Approximation and Weak Convergence Methods for Random Processes, with Applications to Stochastic Systems Theory, vol. 6. MIT Press, Cambridge (1984)

    MATH  Google Scholar 

  46. Zhu, W.Q., Huang, Z.L., Yang, Y.Q.: Stochastic averaging of quasi-integrable-Hamiltonian systems. J. Appl. Mech. 64, 975–984 (1997)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China through the Grant Nos. 11872307, 11972293, Natural Science Basic Research Plan in Shaanxi Province of China, No. 2018JQ1086 and “Research Funds for Interdisciplinary subject, NWPU”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongchun Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, R., Gu, X. & Deng, Z. Stochastic response analysis of multi-degree-of-freedom vibro-impact system undergoing Markovian jump. Nonlinear Dyn 101, 823–834 (2020). https://doi.org/10.1007/s11071-020-05823-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05823-z

Keywords

Navigation