Skip to main content

Advertisement

Log in

Further dynamical analysis of modified Fitzhugh–Nagumo model under the electric field

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Models of neurons play an essential role in computational neuroscience. They provide a virtual laboratory to analyze the different regimes in the electrical activities of a single neuron or a network of neurons. They help the neuroscientist to have a better look at the nervous system. Some researchers have claimed that the transition of the ions through the membrane may induce an electrical field. In this paper, a new neuronal model is investigated which considers the effect of the electrical field. The dynamical properties of this model are studied. Different dynamical analyses are carried out to this end: investigating the stability of the equilibria, observing state space and trajectories, obtaining bifurcation diagram and Lyapunov exponents’ diagram, and finally exploring the basin of attraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ma, J., Yang, Z., Yang, L., Tang, J.: A physical view of computational neurodynamics. J. Zhejiang Univ. Sci. A 20(9), 639–659 (2019)

    Google Scholar 

  2. Majhi, S., Bera, B.K., Ghosh, D., Perc, M.: Chimera states in neuronal networks: a review. Phys. Life Rev. 28, 100–121 (2019)

    Google Scholar 

  3. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943)

    MathSciNet  MATH  Google Scholar 

  4. Wei, Z., Parastesh, F., Azarnoush, H., Jafari, S., Ghosh, D., Perc, M., Slavinec, M.: Nonstationary chimeras in a neuronal network. EPL Europhys. Lett. 123(4), 48003 (2018)

    Google Scholar 

  5. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)

    Google Scholar 

  6. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35(1), 193–213 (1981)

    Google Scholar 

  7. Calim, A., Hövel, P., Ozer, M., Uzuntarla, M.: Chimera states in networks of type-i morris-lecar neurons. Phys. Rev. E 98(6), 062217 (2018)

    MathSciNet  Google Scholar 

  8. Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12(1), 1–24 (1972)

    Google Scholar 

  9. FitzHugh, R.: Mathematical models of threshold phenomena in the nerve membrane. Bull. Math. Biophys. 17(4), 257–278 (1955)

    Google Scholar 

  10. Yilmaz, E., Uzuntarla, M., Ozer, M., Perc, M.: Stochastic resonance in hybrid scale-free neuronal networks. Phys. A 392(22), 5735–5741 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Hindmarsh, J.L., Rose, R.: A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. B Biol. Sci. 221(1222), 87–102 (1984)

    Google Scholar 

  12. Lu, L., Bao, C., Ge, M., Xu, Y., Yang, L., Zhan, X., Jia, Y.: Phase noise-induced coherence resonance in three dimension memristive hindmarsh-rose neuron model. Eur. Phys. J. Spec. Top. 228(10), 2101–2110 (2019)

    Google Scholar 

  13. Bera, B.K., Rakshit, S., Ghosh, D., Kurths, J.: Spike chimera states and firing regularities in neuronal hypernetworks. Chaos: Interdiscip. J. Nonlinear Sci. 29(5), 053115 (2019)

    MathSciNet  Google Scholar 

  14. Rakshit, S., Bera, B.K., Ghosh, D.: Synchronization in a temporal multiplex neuronal hypernetwork. Phys. Rev. E 98(3), 032305 (2018)

    MathSciNet  Google Scholar 

  15. Majhi, S., Ghosh, D.: Alternating chimeras in networks of ephaptically coupled bursting neurons. Chaos: Interdiscip. J. Nonlinear Sci. 28(8), 083113 (2018)

    MathSciNet  Google Scholar 

  16. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14(6), 1569–1572 (2003)

    MathSciNet  Google Scholar 

  17. Xu, Y., Ma, J., Zhan, X., Yang, L., Jia, Y.: Temperature effect on memristive ion channels. Cogn. Neurodyn. 13(6), 601–611 (2019)

    Google Scholar 

  18. Rulkov, N.F.: Modeling of spiking-bursting neural behavior using two-dimensional map. Phys. Rev. E 65(4), 041922 (2002)

    MathSciNet  MATH  Google Scholar 

  19. Zandi-Mehran, N., Panahi, S., Hosseini, Z., Golpayegani, S.M.R.H., Jafari, S.: One dimensional map-based neuron model: a phase space interpretation. Chaos, Solitons Fractals 132, 109558 (2020)

    MathSciNet  Google Scholar 

  20. Lv, M., Wang, C., Ren, G., Ma, J., Song, X.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85(3), 1479–1490 (2016)

    Google Scholar 

  21. Leutcho, G.D., Kengne, J., Kengne, R.: Remerging feigenbaum trees, and multiple coexisting bifurcations in a novel hybrid diode-based hyperjerk circuit with offset boosting. Int. J. Dyn. Control 7(1), 61–82 (2019)

    Google Scholar 

  22. Xu, Y., Jia, Y., Ma, J., Hayat, T., Alsaedi, A.: Collective responses in electrical activities of neurons under field coupling. Sci. Rep. 8(1), 1–10 (2018)

    Google Scholar 

  23. Xu, Y., Ying, H., Jia, Y., Ma, J., Hayat, T.: Autaptic regulation of electrical activities in neuron under electromagnetic induction. Sci. Rep. 7, 43452 (2017)

    Google Scholar 

  24. Leutcho, G.D., Kengne, J.: A unique chaotic snap system with a smoothly adjustable symmetry and nonlinearity: chaos, offset-boosting, antimonotonicity, and coexisting multiple attractors. Chaos, Solitons Fractals 113, 275–293 (2018)

    MathSciNet  Google Scholar 

  25. Ma, J., Zhang, G., Hayat, T., Ren, G.: Model electrical activity of neuron under electric field. Nonlinear Dyn. 95(2), 1585–1598 (2019)

    Google Scholar 

  26. Wu, F., Ma, J., Zhang, G.: A new neuron model under electromagnetic field. Appl. Math. Comput. 347, 590–599 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Hilborn, R.C., et al.: Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  28. Sprott, J.C.: Elegant Chaos: Algebraically Simple Chaotic Flows. World Scientific, New York (2010)

    MATH  Google Scholar 

  29. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, vol. 112. Springer, Berlin (2013)

    Google Scholar 

  30. Crevier, D.W., Meister, M.: Synchronous period-doubling in flicker vision of salamander and man. J. Neurophysiol. 79(4), 1869–1878 (1998)

    Google Scholar 

  31. Falahian, R., Dastjerdi, M.M., Molaie, M., Jafari, S., Gharibzadeh, S.: Artificial neural network-based modeling of brain response to flicker light. Nonlinear Dyn. 81(4), 1951–1967 (2015)

    MathSciNet  Google Scholar 

  32. Schiff, S.J., Jerger, K., Duong, D.H., Chang, T., Spano, M.L., Ditto, W.L.: Controlling chaos in the brain. Nature 370(6491), 615–620 (1994)

    Google Scholar 

  33. Faure, P., Korn, H.: Is there chaos in the brain? i. concepts of nonlinear dynamics and methods of investigation. Comptes Rendus de l’Académie des Sciences-Series III-Sciences de la Vie 324(9), 773–793 (2001)

    Google Scholar 

  34. Korn, H., Faure, P.: Is there chaos in the brain? ii. experimental evidence and related models. C. R. Biol. 326(9), 787–840 (2003)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Hunan Provincial Department of Education General Project Fund (No. B08004056) and the National Natural Science Foundation of China (Grant Nos. 61901530, 11747150).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajad Jafari.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, B., Panahi, S., He, S. et al. Further dynamical analysis of modified Fitzhugh–Nagumo model under the electric field. Nonlinear Dyn 101, 521–529 (2020). https://doi.org/10.1007/s11071-020-05816-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05816-y

Keywords

Navigation