Skip to main content
Log in

Fully distributed spherical formation tracking control for nonlinear vehicles with spatiotemporal uncertainties and digraphs

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper addresses the spherical formation tracking control problem of nonlinear vehicles under digraphs, where the dynamics of vehicle contains spatiotemporal uncertainties consisted of the mismatched and matched flowfields and model uncertainties. The novel cooperative adaptive flow estimates and adaptive neural networks for the reconstruction of model uncertainties are designed based on the neighbor information. A fully distributed formation tracking protocol is generated by dynamics surface and achieves the three-dimensional sphere landing task with the position restriction, the orbit tracking task and the lateral circular formation task without using any global information of the digraph. The stability of the closed-loop system is analyzed in the Lyapunov sense, and the spherical formation tracking errors converge to a small neighborhood of the origin. Simulation results show the feasibility and effectiveness of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Giulietti, F., Pollini, L., Innocenti, M.: Autonomous formation flight. IEEE Control Syst. Mag. 20(6), 34–44 (2000)

    Article  Google Scholar 

  2. Scharf, D.P., Hadaegh, F.Y., Ploen, S.R.: A survey of spacecraft formation flying guidance and control (Part II): control. In: Proceedings of the 2004 American Control Conference, pp. 2976–2985, Boston, MA, USA (2004)

  3. Ren, W., Beard, R.W.: Decentralized scheme for spacecraft formation flying via the virtual structure approach. J. Guid. Control Dyn. 27(1), 73–82 (2004)

    Article  Google Scholar 

  4. Vandyke, M.C., Hall, C.D.: Decentralized coordinated attitude control within a formation of spacecraft. J. Guid. Control Dyn. 29(5), 1101–1109 (2006)

    Article  Google Scholar 

  5. NASA: Lunar Precursor Robotic Program (Online). http://www.nasa.gov/exploration/acd/lunar.html

  6. NASA: Robotic Mars Exploration (Online). http://www.nasa.gov/missionpages/mars/main/index.html

  7. Paley, D.A.: Stabilization of collective motion on a sphere. Automaica 45(1), 212–216 (2009)

    Article  MathSciNet  Google Scholar 

  8. Beard, R.W., Lawton, J., Hadaegh, F.Y.: A coordination architecture for spacecraft formation control. IEEE Trans. Control Syst. Technol. 9(6), 777–790 (2001)

    Article  Google Scholar 

  9. Zhang, F., Leonard, N.E.: Coordinated patterns of unit speed particles on a closed curve. Syst. Control Lett. 56(6), 397–407 (2007)

    Article  MathSciNet  Google Scholar 

  10. Kim, T.H., Sugie, T.: Cooperative control for target-capturing task based on a cyclic pursuit strategy. Automatica 43(8), 1426–1431 (2007)

    Article  MathSciNet  Google Scholar 

  11. Ren, W.: Formation keeping and attitude alignment for multiple spacecraft through local interactions. J. Guid. Control Dyn. 30(2), 633–638 (2007)

    Article  Google Scholar 

  12. Zhu, J.D.: Synchronization of Kuramoto model in a high-dimensional linear space. Phys. Lett. A 377(41), 2939–2943 (2013)

    Article  MathSciNet  Google Scholar 

  13. Li, Z.K., Wen, G.H., Duan, Z.S., Ren, W.: Designing fully distributed consensus protocols for linear multi-agent systems with directed graphs. IEEE Trans. Autom. Control 60(4), 1152–1157 (2015)

    Article  MathSciNet  Google Scholar 

  14. Chen, Y.-Y., Tian, Y.-P.: Formation tracking and attitude synchronization control of underactuated ships along closed orbits. Int. J. Robust Nonlinear Control 25(16), 2023–2044 (2015)

    Article  MathSciNet  Google Scholar 

  15. Dong, X.W., Hu, G.Q.: Time-varying formation tracking for linear multiagent systems with multiple leaders. IEEE Trans. Autom. Control 62(7), 3658–3664 (2017)

    Article  MathSciNet  Google Scholar 

  16. Summers, T.H., Akella, M.R., Mears, M.J.: Coordinated standoff tracking of moving targets: control laws and information architectures. J. Guid. Control Dyn. 32(1), 56–69 (2009)

    Article  Google Scholar 

  17. Peterson, C., Paley, D.A.: Multivehicle coordination in an estimated time-varying flowfield. J. Guid. Control Dyn. 34(1), 177–191 (2011)

    Article  Google Scholar 

  18. Peterson, C.K., Paley, D.A.: Distributed estimation for motion coordination in an unknown spatially varying flowfield. J. Guid. Control Dyn. 36(3), 894–898 (2013)

    Article  Google Scholar 

  19. Chen, Y.-Y., Wang, Z.-Z., Zhang, Y., Liu, C.-L., Wang, Q.: A geometric extension design for spherical formation tracking control of second-order agents in unknown spatiotemporal flowfields. Nonlinear Dyn. 88(2), 1173–1186 (2017)

    Article  Google Scholar 

  20. Gong, P., Lan, W.Y.: Adaptive robust tracking control for uncertain nonlinear fractional-order multi-agent systems with directed topologies. Automatica 92, 92–99 (2018)

    Article  MathSciNet  Google Scholar 

  21. Chen, Y.-Y., Ai, X., Zhang, Y.: Spherical formation tracking control for second-order agents with unknown general flowfields and strongly connected topologies. Int. J. Robust Nonlinear Control 29(11), 3715–3736 (2019)

    Article  MathSciNet  Google Scholar 

  22. Wang, X.Y., Li, S.H., Lam, J.: Distributed active anti-disturbance output consensus algorithms for higher-order multi-agent systems with mismatched disturbances. Automatica 71, 30–37 (2016)

    Article  MathSciNet  Google Scholar 

  23. Wang, X.Y., Li, S.H., Yu, X.H., Yang, J.: Distributed active anti-disturbance consensus algorithms for leader–follower higher-order multi-agent systems with mismatched disturbances. IEEE Trans. Autom. Control 62(11), 5795–5801 (2017)

    Article  Google Scholar 

  24. Chen, Y.-Y., Rui, Y., Zhang, Y., Liu, C.: Circular formation flight control for unmanned aerial vehicles with directed network and external disturbance. IEEE/CAA J. Autom. Sin. 7(2), 505–516 (2020)

    Article  MathSciNet  Google Scholar 

  25. Peng, Z.H., Wang, D., Li, T.S., Wu, Z.L.: Leaderless and leader–follower cooperative control of multiple marine surface vehicles with unknown dynamics. Nonlinear Dyn. 74, 95–106 (2013)

    Article  MathSciNet  Google Scholar 

  26. Peng, Z.H., Wang, D., Wang, H., Wang, W.: Distributed coordinated tracking of multiple autonomous underwater vehicles. Nonlinear Dyn. 78, 1261–1276 (2014)

    Article  Google Scholar 

  27. Peng, Z.H., Wang, J., Wang, D.: Distributed maneuvering of autonomous surface vehicles based on neurodynamic optimization and fuzzy approximation. IEEE Trans. Control Syst. Technol. 26(3), 1083–1090 (2018)

    Article  MathSciNet  Google Scholar 

  28. Yu, J.L., Dong, X.W., Li, Q.D., Ren, Z.: Practical time-varying formation tracking for second-order nonlinear multiagent systems with multiple leaders using adaptive neural networks. IEEE Trans. Neural Netw. Learn. Syst. 29(12), 6015–6025 (2018)

    Article  MathSciNet  Google Scholar 

  29. Li, D.Y., Zhang, W., He, W., Li, C.J., Ge, S.S.: Two-layer distributed formation-containment control of multiple Euler–Lagrange systems by output feedback. IEEE Trans. Cybern. 49(2), 675–687 (2019)

    Article  Google Scholar 

  30. Xu, X.L., Li, Z.T., Gao, L.X.: Distributed adaptive tracking control for multi-agent systems with uncertain dynamics. Nonlinear Dyn. 90, 2729–2744 (2017)

    Article  MathSciNet  Google Scholar 

  31. Peng, Z.H., Wang, J.: Output-feedback path-following control of autonomous underwater vehicles based on an extended state observer and projection neural networks. IEEE Transa. Syst. Man Cybern. Syst. 48(4), 535–544 (2018)

    Article  Google Scholar 

  32. Meng, D., Jia, Y., Du, J.: Robust consensus tracking control for multiagent systems with initial state shifts, disturbances, and switching topologies. IEEE Transact. Neural Netw. Learn. Syst. 26(4), 809–824 (2015)

    Article  MathSciNet  Google Scholar 

  33. Yuan, C.Z., Licht, S., He, H.B.: Formation learning control of multiple autonomous underwater vehicles with heterogeneous nonlinear uncertian dynamics. IEEE Transa. Cybern. 48(10), 2920–2934 (2018)

    Article  Google Scholar 

  34. Zhang, J., Meng, D.: Convergence analysis of saturated iterative learning control systems with locally Lipschitz nonlinearities. IEEE Trans. Neural Netw. Learn. Syst. (2019). https://doi.org/10.1109/TNNLS.2019.2951752

    Article  MathSciNet  Google Scholar 

  35. Sun, Z.J., Wang, G.Q., Lu, Y., Zhang, W.D.: Leader–follower formation control of underactuated surface vehicles based on sliding mode control and parameter estimation. ISA Trans. 72, 15–24 (2018)

    Article  Google Scholar 

  36. Mei, K., Ding, S.: Second-order sliding mode controller design subject to an upper-triangular structure. IEEE Trans. Syst. Man Cybern. Syst. (2018). https://doi.org/10.1109/TSMC.2018.2875267

    Article  Google Scholar 

  37. Ding, S., Park, J., Chen, C.-C.: Second-order sliding mode controller design with output constraint. Automatica 112, 108704 (2020)

    Article  MathSciNet  Google Scholar 

  38. Polycarpou, M.M.: Stable adaptive neural control scheme for nonlinear systems. IEEE Trans. Autom. Control 41(3), 447–451 (1996)

    Article  MathSciNet  Google Scholar 

  39. Carmo, M.P.: Differential Geometry of Surfaces, 2nd edn. Prentice-Hall, Englewood Cliffs (1976)

    MATH  Google Scholar 

  40. Khalil, H.K.: Nonlinear Systems, 2nd edn, p. 07458. Prentice Hall, Upper Saddle River (1996)

    Google Scholar 

  41. Yu, W., Chen, G., Cao, M., Kurths, J.: Second-order consensus for multiagent systems with directed topologies and nonlnear dynamics. IEEE Trans. Syst. Man Cybern. Part B Cybern. 40(3), 881–891 (2010)

    Article  Google Scholar 

  42. Zhang, B.-Q., Song, S.-M.: Decentralized coordinated control for multiple spacecraft formation maneuvers. Acta Astronaut. 74(74), 79–97 (2012)

    Article  Google Scholar 

  43. Dennis, C.P.: Linearized equations for J2 perturbed relative to an elliptical orbit. Doctor Thesis. San Jose State University, San Jose (2005)

  44. Clohessy, W.H., Wiltshire, R.S.: Terminal guidance system for satellite rendezvous. J. Astronaut. Sci. 27(9), 653–678 (1960)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61673106) and Natural Science Foundation of Jiangsu Province (Grant No. BK20171362).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-Yang Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YY., Yu, R. & Zhang, Y. Fully distributed spherical formation tracking control for nonlinear vehicles with spatiotemporal uncertainties and digraphs. Nonlinear Dyn 101, 997–1013 (2020). https://doi.org/10.1007/s11071-020-05808-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05808-y

Keywords

Navigation