Skip to main content
Log in

Cooperative game-oriented optimal design in constraint-following control of mechanical systems

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes a cooperative game-oriented optimal design problem of robust control for uncertain mechanical systems. State of the concerned system is affected by (possibly fast) time-varying but bounded uncertainty. The task is to drive the system to obey a set of prescribed constraints. A \(\beta \)-measure is defined to gauge the constraint-following error; based on which, a robust control with two tunable parameters is then proposed to render the system to be uniform boundedness and uniform ultimate boundedness. For the seeking of the optimal design parameters, two cost functions, each of which is dominated by one tunable parameter, are developed, and thereout a two-player cooperative game is formulated. Finally, the optimal design problem is successfully solved: with the existence, uniqueness, and analytical expression of the Pareto-optimality. This paper is the first ever endeavor to cast both constraint following and cooperative game into control framework for uncertain mechanical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Cheng, C., Chen, T.: Robust control of Euler–Lagrange mechanical systems with decentralized adaptive scheme. In: 2016 International Automatic Control Conference (CACS), Taichung, pp. 227–231 (2016)

  2. Yang, D., Feng, Z., Sha, R., Ren, X.: Robust control of a class of under-actuated mechanical systems with model uncertainty. Int. J. Control 92(7), 1567–79 (2019)

    Article  MathSciNet  Google Scholar 

  3. Rascón, R., Rosas, D., Hernandez-Fuentes, I., Rodriguez, J.C.: Robust tracking control for mechanical systems using only position measurements. ISA Trans. 100, 299–307 (2019)

    Article  Google Scholar 

  4. Rascón, R.: Robust tracking control for a class of uncertain mechanical systems. Automatika 60(2), 124–134 (2019)

    Article  MathSciNet  Google Scholar 

  5. Chen, Y.H.: Approximate constraint-following of mechanical systems under uncertainty. Nonlinear Dyn. Syst. Theory 8(4), 329–337 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Udwadia, F.E., Prasanth, B.K.: Optimal stable control for nonlinear dynamical systems: an analytical dynamics based approach. Nonlinear Dyn. 82(1–2), 547–562 (2015)

    Article  MathSciNet  Google Scholar 

  7. Hasanien, H.M.: Transient stability augmentation of a wave energy conversion system using a water cycle algorithm-based multi-objective optimal control strategy. IEEE Trans. Ind. Inform. (2018). https://doi.org/10.1109/TII.2018.2871098

    Article  Google Scholar 

  8. Hua, H., Qin, Y., Hao, C., Cao, J.: Stochastic optimal control for energy internet: a bottom-up energy management approach. IEEE Trans. Ind. Inform. (2018). https://doi.org/10.1109/TII.2018.2867373

    Article  Google Scholar 

  9. Wang, X., Zhao, H., Sun, Q., Chen, Y.H.: Regulating constraint obedience for fuzzy mechanical systems based on \(\beta \)-measure and a general Lyapunov function. IEEE Trans. Fuzzy Syst. 25(6), 1729–1740 (2016)

    Article  Google Scholar 

  10. Yin, H., Chen, Y.H., Yu, D.: Rendering optimal design in controlling fuzzy dynamical systems: a cooperative game approach. IEEE Trans. Ind. Inform. (2018). https://doi.org/10.1109/TII.2018.2884616

    Article  Google Scholar 

  11. Isaacs, R.: Differential Games. Wiley, New York (1965)

    MATH  Google Scholar 

  12. Yuan, Y., Yuan, H., Guo, L., Yang, H., Sun, S.: Resilient control of networked control system under DoS attacks: a unified game approach. IEEE Trans. Ind. Inform. 12(5), 1786–1794 (2016)

    Article  Google Scholar 

  13. Zhao, D., Zhang, Q., Wang, D., Zhu, Y.: Experience replay for optimal control of nonzero-sum game systems with unknown dynamics. IEEE Trans. Cybernet. 46(3), 854–865 (2016)

    Article  Google Scholar 

  14. Zhong, X., He, H., Wang, D., Ni, Z.: Model-free adaptive control for unknown nonlinear zero-sum differential game. IEEE Trans. Cybernet. 48(5), 1633–1646 (2018)

    Article  Google Scholar 

  15. Liang, L., Deng, F., Peng, Z., Li, X., Zha, W.: A differential game for cooperative target defense. Automatica 102, 58–71 (2019)

    Article  MathSciNet  Google Scholar 

  16. Saleheen, F., Won, C.H.: Statistical Stackelberg game control: open-loop minimal cost variance case. Automatica 101, 338–344 (2019)

    Article  MathSciNet  Google Scholar 

  17. Wang, X., Zhao, H., Sun, Q., Chen, Y.H.: A new high-order adaptive robust control for constraint following of mechanical systems. Asian J. Control 19, 1672–1687 (2017)

    MathSciNet  MATH  Google Scholar 

  18. Wang, X., Sun, Q., Chen, Y.H.: Adaptive robust control for triple evasion-tracing-arrival performance of uncertain mechanical systems. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 231(8), 652–668 (2017)

    Google Scholar 

  19. Sun, Q., Wang, X., Chen, Y.H.: Adaptive robust control for dual avoidance-arrival performance for uncertain mechanical systems. Nonlinear Dyn. 94(2), 759–774 (2018)

    Article  Google Scholar 

  20. Sun, Q., Yang, G., Wang, X., Chen, Y.: Designing robust control for mechanical systems: constraint following and multivariable optimization. IEEE Trans. Ind. Inform. (2019). https://doi.org/10.1109/TII.2019.2951842

    Article  Google Scholar 

  21. Vincent, T.L., Leitmann, G.: Control-space properties of cooperative games. J. Optim. Theory Appl. 6(2), 91–113 (1970)

    Article  MathSciNet  Google Scholar 

  22. Leitmann, G., Rocklin, S., Vincent, T.L.: A note on control space properties of cooperative games. J. Optim. Theory Appl. 9(6), 379–390 (1972)

    Article  MathSciNet  Google Scholar 

  23. Yu, P.L., Leitmann, G.: Compromise solutions, domination structures, and Salukvadze’s solution. J. Optim. Theory Appl. 13(3), 362–378 (1974)

    Article  MathSciNet  Google Scholar 

  24. Pareto, V.: Manuel d’\(\acute{e}\)conomique Politique. Girard et Briere, Paris (1909)

    Google Scholar 

  25. Leitmann, G.: Cooperative and Non-cooperative Many Players Differential Games. Springer, Vienna (1974)

    Book  Google Scholar 

  26. Pars, L.A.: A Treatise on Analytical Dynamics. Ox Bow Press, Oxford (1981)

    MATH  Google Scholar 

  27. Rosenberg, R.M.: Analytical Dynamics of Discrete Systems. Plenum Press, New York (1977)

    Book  Google Scholar 

  28. Udwadia, F.E., Kalaba, R.E.: Analytical Dynamics: A New Approach. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  29. Papastavridis, J.G.: Analytic Mechanics. Oxford University Press, New York (2002)

    Google Scholar 

  30. Noble, B., Daniel, J.W.: Applied Linear Algebra. Prentice-Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  31. Chen, Y.H., Leitmann, G.: Robustness of uncertain systems in the absence of matching assumptions. Int. J. Control 45(5), 1527–1542 (1987)

    Article  MathSciNet  Google Scholar 

  32. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

  33. Krstić, M., Tsiotras, P.: Inverse optimal stabilization of a rigid spacecraft. IEEE Trans. Autom. Control 44(5), 1042–1049 (1999)

    Article  MathSciNet  Google Scholar 

  34. Woolsey, C.A., Leonard, N.E.: Stabilizing underwater vehicle motion using internal rotors. Automatica 38(12), 2053–2062 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research is supported jointly by the “Natural Science Foundation of China” (No. 51805263), the “Provincial Natural Science Foundation of Jiangsu” (No. BK20180474), the “Fundamental Research Funds for the Central Universities” (No. 309181B8811), the “Nanjing University of Science and Technology Independent Research Program” (No. 30920021105), and the “Jiangsu Planned Projects for Postdoctoral Research Funds” (No. 2020Z179).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guolai Yang.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Q., Yang, G., Wang, X. et al. Cooperative game-oriented optimal design in constraint-following control of mechanical systems. Nonlinear Dyn 101, 977–995 (2020). https://doi.org/10.1007/s11071-020-05800-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05800-6

Keywords

Navigation