Skip to main content
Log in

A predictor–corrector time integration algorithm for dynamic analysis of nonlinear systems

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a step-by-step time integration algorithm for efficiently solving second-order nonlinear dynamic problems. The method employs the rewriting of motion as two sets of first-order differential equations. The interpolation of the relevant quantities is achieved by a particular quadratic polinomial expression for the velocities and forces and is defined by values at the boundaries of the time step. Then the time definite integrals of both first-order ordinary differential equations define the numerical relations in the step. An accurate extrapolation predictor and an adaptive time stepping procedure are used as the time predictor–corrector method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Belytschko, T., Hughes, T.: Computational Methods for Transient Analysis. North Holland, Amsterdam (1983)

    MATH  Google Scholar 

  2. Hughes, T.: The Finite Element Method. Prentice Hall, New Jersey (1987)

    MATH  Google Scholar 

  3. Géradin, M., Rixen, D.: Mechanical Vibrations Theory and Applications to Structural Dynamics. Wiley, Paris (1994)

    Google Scholar 

  4. Bathe, K.J.: Finite Element Procedures. Prentice Hall, New Jersey (1996)

    MATH  Google Scholar 

  5. Hulbert, G., Chung, J.: Explicit time integration algorithms for structural dynamics with optimal numerical dissipation. Comput. Methods Appl. Mech. Eng. 137, 175–188 (1996)

    Article  MathSciNet  Google Scholar 

  6. Géradin, M., Cardona, A.: Flexible Multibody Dynamics. A Finite Element Approach. Wiley, New Jersey (2000)

    Google Scholar 

  7. Newmark, N.: A method of computation for structural dynamics. J. Eng. Mech. Div. ASCE 85, 67–94 (1959)

    Google Scholar 

  8. Belytschko, T., Schoeberle, D.F.: On the unconditional stability of an implicit algorithm for nonlinear structuraldynamics. J. Appl. Mech. 42, 865–869 (1975)

    Article  Google Scholar 

  9. Hughes, T.J.R., Caughy, T.K., Liu, W.K.: Finite-element methods for nonlinear elastodynamics which conserve energy. J. Appl. Mech. 45, 366–370 (1978)

    Article  Google Scholar 

  10. Simo, J.C., Tarnow, N.: A new energy and momentum conserving algorithm for the nonlinear dynamics of shells. Intern. J. Numer. Methods Eng. 37, 2527–2549 (1994)

    Article  Google Scholar 

  11. Armero, F., Petöcz, E.: Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems. Comput. Methods Appl. Mech. Eng. 158, 269–300 (1998)

    Article  MathSciNet  Google Scholar 

  12. Kuhl, D., Ramm, E.: Generalized energy-momentum method for non-linear adaptive shell dynamics. Comput. Methods Appl. Mech. Eng. 178, 343–366 (1999)

    Article  MathSciNet  Google Scholar 

  13. Hoff, C., Pahl, P.J.: Development of an implicit method with numerical dissipation for generalized single step algorithm for structural dynamics. Comput. Methods Appl. Mech. Eng. 67, 367–385 (1988)

    Article  MathSciNet  Google Scholar 

  14. Chung, J., Hulbert, G.M.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. J. Appl. Mech. 60, 371–375 (1993)

    Article  MathSciNet  Google Scholar 

  15. Betsch, P., Steinmann, P.: Conservation properties of a time FE method. part I: time-stepping schemes for N-body problems. Int. J. Numer. Methods Eng. 49, 599–638 (2000)

    Article  Google Scholar 

  16. Pimenta, P.M., Campello, E.M.B., Wriggers, P.: An exact conserving algorithm for nonlinear dynamisc with rotational DOFs and general hyperelasticity. part 1 rods. Comput. Mech. 42, 715–732 (2008)

    Article  MathSciNet  Google Scholar 

  17. Argyris, J., Papadrakakis, M., Mauroutis, Z.S.: Nonlinear dynamic analysis of shells with the triangular element TRIC. Comput. Methods Appl. Mech. Eng. 192, 3005–3038 (2003)

    Article  Google Scholar 

  18. Lopez, S.: Changing the representation and improving stability in time-stepping analysis of structural non-linear dynamics. Nonlinear Dyn. 46, 337–348 (2006)

    Article  Google Scholar 

  19. Lopez, S.: Improving stability by change of representation in time-stepping analysis of non-linear beams dynamics. Intern. J. Numer. Methods Eng. 69, 822–836 (2007)

    Article  Google Scholar 

  20. Lopez, S.: Relaxed representations and improving stability in time-stepping analysis of three-dimensional structural nonlinear dynamics. Nonlinear Dyn. 69, 705–720 (2012)

    Article  MathSciNet  Google Scholar 

  21. Hughes, T.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Courier Dover Publications, New York (2012)

    Google Scholar 

  22. Bathe, K.J., Baig, M.M.I.: On a composite implicit time integration procedure for nonlinear dynamics. Comput. Struct. 83, 2513–34 (2005)

    Article  MathSciNet  Google Scholar 

  23. Bathe, K.J.: Conserving energy and momentum in nonlinear dynamics: a simple implicit time integration scheme. Comput. Struct. 85, 437–45 (2007)

    Article  MathSciNet  Google Scholar 

  24. Bathe, K.J., Noh, G.: Insight into an implicit time integration scheme for structural dynamics. Comput. Struct. 98, 1–6 (2012)

    Article  Google Scholar 

  25. Simo, J.C., Wong, K.K.: Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy and momentum. Intern. J. Numer. Methods Eng. 31, 19–52 (1991)

    Article  MathSciNet  Google Scholar 

  26. Gonzalez, O.: Exact energy and momentum conserving algorithms for general models in non-linear elasticity. Comput. Methods Appl. Mech. Eng. 190, 1763–1783 (2000)

    Article  Google Scholar 

  27. Lens, E.V., Cardona, A., Geradin, M.: Energy preserving time integration for constrained multibody systems. Multibody Syst. Dyn. 11, 41–61 (2004)

    Article  MathSciNet  Google Scholar 

  28. Krenk, S.: State-space time integration with energy control and 4th order accuracy for linear dynamic systems. Intern. J. Numer. Methods Eng. 65, 595–619 (2006)

    Article  Google Scholar 

  29. Malakiyeh, M.M., Shojaee, S., Bathe, K.J.: The Bathe time integration method revisited for prescribing desired numerical dissipation. Comput. Struct. 212, 289–298 (2019)

    Article  Google Scholar 

  30. Noh, G., Bathe, K.J.: The Bathe time integration method with controllable spectral radius: The \(\rho _{\infty }\)-Bathe method. Comput. Struct. 212, 299–310 (2019)

    Article  Google Scholar 

  31. Humar, J.L.: Dynamics of Structures. CRC Press, Leiden (2012)

    Book  Google Scholar 

  32. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Prentice-Hall, Englewood Cliffs (1989)

    Book  Google Scholar 

  33. Ogden, R.W.: Non-Linear Elastic Deformations. E. Horwood, Chichester (2013)

    Google Scholar 

  34. Kuhl, D., Ramm, E.: Constraint energy momentum algorithm and its application to non-linear dynamics of shells. Comput. Methods Appl. Mech. Eng. 136, 293–315 (1996)

    Article  Google Scholar 

  35. Crisfield, M.A.: Non-linear Finite Element Analysis of Solids and Structures. Advanced Topics, vol. 2. Wiley, Chichester (2003)

    Google Scholar 

  36. Nour-Omid, B., Rankin, C.C.: Finite rotation analysis and consistent linearization using projectors. Comput. Methods Appl. Mech. Eng. 93, 353–384 (1991)

    Article  Google Scholar 

  37. Pacoste, C.: Co-rotational flat facet triangular elements for shell instability analyses. Comput. Methods Appl. Mech. Eng. 156, 75–110 (1998)

    Article  Google Scholar 

  38. Lopez, S.: Three-dimensional finite rotations treatment based on a minimal set parameterization and vector space operations in beam elements. Comput. Mech. 52, 377–399 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Lopez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez, S. A predictor–corrector time integration algorithm for dynamic analysis of nonlinear systems. Nonlinear Dyn 101, 1365–1381 (2020). https://doi.org/10.1007/s11071-020-05798-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05798-x

Keywords

Navigation