Skip to main content
Log in

Scenarios in the experimental response of a vibro-impact single-degree-of-freedom system and numerical simulations

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, possible scenarios within the experimental dynamic response of a vibro-impact single-degree-of-freedom system, symmetrically constrained by deformable and dissipative bumpers, were identified and described. The different scenarios were obtained varying selected parameters, namely peak table acceleration \(\hbox {A}\), amplitude of the total gap between mass and bumpers \(\hbox {G}\) and bumper’s stiffness \(\hbox {B}\). Subsequently, using a Simplified Nonlinear Model results in good agreement with the experimental outcomes were obtained, although the model includes only the nonlinearities due to clearance existence and impact occurrence. Further numerical analysis highlighted other scenarios that can be obtained for values of the parameters not considered in the experimental laboratory campaign. Finally, to attempt a generalization of the results, suitable dimensionless parameters were introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Ibrahim, R.A.: Vibro-Impact Dynamics: Modeling, Mapping and Applications. Lecture Notes in Applied and Computational Mechanics, vol. 43. Springer, Heidelberg (2009)

    MATH  Google Scholar 

  2. Liu, Y., Wiercigroch, M., Pavlovskaia, E., Peng, Z.K.: Forward and backward motion control of a vibro-impact capsule system. Int. J. Nonlinear Mech. 70, 30–46 (2015)

    Google Scholar 

  3. Liu, Y., Pavlovskaia, E., Wiercigroch, M.: Experimental verification of the vibro-impact capsule model. Nonlinear Dyn. 83(1–2), 1029–1041 (2016)

    Google Scholar 

  4. Yan, Y., Liu, Y., Liao, M.: A comparative study of the vibro-impact capsule systems with one-sided and two-sided constraints. Nonlinear Dyn. 89(2), 1063–1087 (2017)

    Google Scholar 

  5. Gu, X.D., Deng, Z.C.H.: Dynamical analysis of vibro-impact capsule system with Hertzian contact model and random perturbation excitations. Nonlinear Dyn. 92(4), 1781–1789 (2018)

    Google Scholar 

  6. Yan, Y., Liu, Y., Manfredi, L., Prasad, S.: Modelling of a vibro-impact self-propelled capsule in the small intestine. Nonlinear Dyn. 96(1), 123–144 (2019)

    Google Scholar 

  7. Divenyi, S., Savi, M.A., Wiercigroch, M., Pavlovskaia, E.: Drill-string vibration analysis using non-smooth dynamics approach. Nonlinear Dyn. 70(2), 1017–1035 (2012)

    MathSciNet  Google Scholar 

  8. Liu, X., Vlajic, N., Long, X., Meng, G., Balachandran, B.: Nonlinear motions of a flexible rotor with a drill bit: stick-slip and delay effects. Nonlinear Dyn. 72(1–2), 61–77 (2013)

    MathSciNet  Google Scholar 

  9. Liu, X., Vlajic, N., Long, X., Meng, G., Balachandran, B.: Coupled axial-torsional dynamics in rotary drilling with state-dependent delay: stability and control. Nonlinear Dyn. 78(3), 1891–1906 (2014)

    Google Scholar 

  10. Liu, Y., Páez Chávez, J., De Sa, R., Walker, S.: Numerical and experimental studies of stick-slip oscillations in drill-strings. Nonlinear Dyn. 90(4), 2959–2978 (2017)

    Google Scholar 

  11. Vaziri, V., Kapitaniak, M., Wiercigroch, M.: Suppression of drill-string stick-slip vibration by sliding mode control: numerical and experimental studies. Eur. J. Appl. Math. 29(5), 805–825 (2018)

    MathSciNet  MATH  Google Scholar 

  12. de Moraes, L.P.P., Savi, M.A.: Drill-string vibration analysis considering an axial-torsional-lateral nonsmooth model. J. Sound Vib. 438, 220–237 (2019)

    Google Scholar 

  13. Malhotra, P.: Dynamics of seismic impacts in base-isolated buildings. Earthq. Eng. Struct. Dyn. 26(8), 797–813 (1997)

    Google Scholar 

  14. Komodromos, P., Polycarpou, P.C., Papaloizou, L., Phocas, M.C.: Response of seismically isolated buildings considering poundings. Earthq. Eng. Struct. Dyn. 36(12), 1605–1622 (2007)

    Google Scholar 

  15. Polycarpou, P.C., Komodromos, P.: On poundings of a seismically isolated building with adjacent structures during strong earthquakes. Earthq. Eng. Struct. Dyn. 39(8), 933–940 (2010)

    Google Scholar 

  16. Polycarpou, P.C., Komodromos, P.: Earthquake-induced poundings of a seismically isolated building with adjacent structures. Eng. Struct. 32(7), 1937–1951 (2010)

    Google Scholar 

  17. Masroor, A., Mosqueda, G.: Experimental simulation of base-isolated buildings pounding against moat wall and effects on superstructure response. Earthq. Eng. Struct. Dyn. 41(14), 2093–2109 (2012)

    Google Scholar 

  18. Masroor, A., Mosqueda, G.: Impact model for simulation of base isolated buildings impacting flexible moat walls. Earthq. Eng. Struct. Dyn. 42, 357–376 (2013)

    Google Scholar 

  19. Mavronicola, E.A., Polycarpou, P.C., Komodromos, P.: Effect of planar impact modeling on the pounding response of base-isolated buildings. Front. Built Environ 2(11), 1–16 (2016)

    Google Scholar 

  20. Reggio, A., De Angelis, M.: Optimal design of an equipment isolation system with nonlinear hysteretic behavior. Earthq. Eng. Struct. Dyn. 42, 1907–1930 (2013)

    Google Scholar 

  21. Reggio, A., De Angelis, M.: Combined primary-secondary system approach to the design of an equipment isolation system with high-damping rubber bearings. J. Sound Vib. 333, 2386–2403 (2014)

    Google Scholar 

  22. Sarebanha, A., Mosqueda, G., Kim, M.K., Kim, J.H.: Seismic response of base isolated nuclear power plants considering impact to moat walls. Nucl. Eng. Des. 328, 58–72 (2018)

    Google Scholar 

  23. Jankowski, R., Wilde, K., Fujino, Y.: Reduction of pounding effects in elevated bridges during earthquakes. Earthq. Eng. Struct. Dyn. 29(2), 195–212 (2000)

    Google Scholar 

  24. Guo, A.X., Li, Z.J., Li, H., Ou, J.P.: Experimental and analytical study on pounding reduction of base isolated highway bridges using MR dampers. Earthq. Eng. Struct. Dyn. 38(11), 1307–1333 (2009)

    Google Scholar 

  25. Hao, H., Bi, K.M., Chouw, N., Ren, W.X.: State-of-the-art review on seismic induced pounding response of bridge structures. J. Earthq. Tsunami 7(3), 1350019-1–1350019-19 (2013)

    Google Scholar 

  26. Anagnostopoulos, S.A.: Pounding of building in series during earthquake. Earthq. Eng. Struct. Dyn. 16, 443–456 (1988)

    Google Scholar 

  27. Polycarpou, P.C., Komodromos, P.: Numerical investigation of potential mitigation measures for poundings of seismically isolated buildings. Earthq. Struct. 2(1), 1–24 (2011)

    Google Scholar 

  28. Polycarpou, P.C., Komodromos, P., Polycarpou, A.C.: A nonlinear impact model for simulating the use of rubber shock absorbers for mitigating the effects of structural pounding during earthquakes. Earthq. Eng. Struct. Dyn. 42(1), 81–100 (2013)

    Google Scholar 

  29. Renzi, E., De Angelis, M.: Optimal semi-active control and non-linear dynamic response of variable stiffness structures. J. Vib. Control 11(10), 1253–1289 (2005)

    MATH  Google Scholar 

  30. Arena, A., Lacarbonara, W., Casalotti, A.: Payload oscillations control in harbor cranes via semi-active vibration absorbers: modeling, simulations and experimental results. Proc. Eng. 199, 501–509 (2017)

    Google Scholar 

  31. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge, UK (1985)

    MATH  Google Scholar 

  32. Goldsmith, W.: Impact—The Theory and Physical Behaviour of Colliding Solids. Edward Arnold Ltd., London (1960)

    MATH  Google Scholar 

  33. Rigaud, E., Perret-Liaudet, J.: Experiments and numerical results on non-linear vibrations of an impacting Hertzian contact. Part 1: harmonic excitation. J. Sound Vib. 265, 289–307 (2003)

    Google Scholar 

  34. Muthukumar, S., DesRoches, R.: A Hertz contact model with non-linear damping for pounding simulation. Earthq. Eng. Struct. Dyn. 35, 811–828 (2006)

    Google Scholar 

  35. Machado, M., Moreira, P., Flores, P., Lankarani, H.M.: Compliant contact force models in multibody dynamics: evolution of the Hertz contact theory. Mech. Mach. Theory 53, 99–121 (2012)

    Google Scholar 

  36. Skrinjar, L., Slavič, J., Boltežar, M.: A review of continuous contact-force models in multibody dynamics. Int. J. Mech. Sci. 145, 171–187 (2018)

    Google Scholar 

  37. Flores, P., Machado, M., Silva, M., Martins, J.: On the continuous contact force models for soft materials in multibody dynamics. Multibody Syst. Dyn. 25, 357–375 (2011)

    MATH  Google Scholar 

  38. Flores, P., Lankarani, H.M.: Contact Force Models for Multibody Dynamics. Springer, Berlin (2016)

    MATH  Google Scholar 

  39. Hertz, H.: Ueber die Berührung fester elastischer Körper. Journal für die reine und angewandte Mathematik 91, 156–171 (1881)

    MATH  Google Scholar 

  40. Půst, L., Peterka, F.: Impact oscillator with Hertz’s model of contact. Meccanica 38, 99–114 (2003)

    MATH  Google Scholar 

  41. Dubowsky, S., Freudenstein, F.: Dynamic analysis of mechanical systems with clearances - part 1: formation of dynamic model. J. Eng. Ind. 93(1), 305–309 (1971)

    Google Scholar 

  42. Khulief, Y.A., Shabana, A.A.: A continuous force model for the impact analysis of flexible multibody systems. Mech. Mach. Theory 22(3), 213–224 (1987)

    Google Scholar 

  43. Hunt, K., Crossley, E.: Coefficient of restitution interpreted as damping in vibroimpact. J. Appl. Mech. 42(2), 440–445 (1975)

    Google Scholar 

  44. Wagg, D.J., Bishp, S.R.: Chatter, sticking and chaotic impacting motion in a two-degree of freedom impact oscillator. Int. J. Bifurcat. Chaos 11(1), 57–71 (2001)

    Google Scholar 

  45. Wagg, D.J., Bishp, S.R.: Dynamics of a two degree of freedom vibro-impact system with multiple motion limiting constraints. Int. J. Bifurcat. Chaos 14(1), 119–140 (2004)

    MATH  Google Scholar 

  46. Luo, G.W., Lv, X.H., Shi, Y.Q.: Vibro-impact dynamics of a two-degree-of freedom periodically-forced system with a clearance: diversity and parameter matching of periodic-impact motions. Int. J. Nonlinear Mech. 65, 173–195 (2014)

    Google Scholar 

  47. Luo, G.W., Zhu, X.F., Shi, Y.Q.: Dynamics of a two-degree-of freedom periodically-forced system with a rigid stop: Diversity and evolution of periodic-impact motions. J. Sound Vib. 334, 338–362 (2015)

    Google Scholar 

  48. Luo, T., Wang, Z.: Periodically forced system with symmetric motion limiting constraints: dynamic characteristics and equivalent electronic circuit realization. Int. J. Nonlinear Mech. 81, 283–302 (2016)

    Google Scholar 

  49. Hao, Z., Cao, Q., Wiercigroch, M.: Two-sided damping constraint control strategy for high-performance vibration isolation and end-stop impact protection. Nonlinear Dyn. 86, 2129–2144 (2016). https://doi.org/10.1007/s11071-016-2685-5

    Article  MathSciNet  MATH  Google Scholar 

  50. Wang, J., Shen, Y., Yang, S.: Dynamical analysis of a single degree-of-freedom impact oscillator with impulse excitation. Adv. Mech. Eng. 9(7), 1–10 (2017). https://doi.org/10.1177/1687814017716619

    Article  Google Scholar 

  51. Gritli, H., Belghith, S.: Diversity in the nonlinear dynamic behavior of a one-degree-of-freedom impact mechanical oscillator under OGY-base d state-feedback control law: Order, chaos and exhibition of the border-collision bifurcation. Mech. Mach. Theory 124, 1–41 (2018)

    Google Scholar 

  52. de S Rebouças, G.F., Santos, I.F., Thomsen, J.J.: Unilateral vibro-impact systems—experimental observations against theoretical predictions based on the coefficient of restitution. J. Sound Vib. 440, 346–371 (2019)

    Google Scholar 

  53. Andreaus, U., De Angelis, M.: Nonlinear dynamic response of a base-excited SDOF oscillator with double-side unilateral constraints. Nonlinear Dyn. 84, 1447–1467 (2016)

    Google Scholar 

  54. Andreaus, U., Baragatti, P., De Angelis, M., Perno, S.: A preliminary experimental study about two-sided impacting SDOF oscillator under harmonic excitation. J. Comput. Nonlin. Dyn. 12, 061010 (2017)

    Google Scholar 

  55. Andreaus, U., Baragatti, P., De Angelis, M., Perno, S.: Shaking table tests and numerical investigation of two-sided damping constraint for end-stop impact protection. Nonlinear Dyn. 90, 2387–2421 (2017)

    Google Scholar 

  56. Andreaus, U., De Angelis, M.: Experimental and numerical dynamic response of a SDOF vibro-impact system with double gaps and bumpers under harmonic excitation. Int. J. Dyn. Control 7(4), 1278–1292 (2019)

    Google Scholar 

  57. Andreaus, U., De Angelis, M.: Influence of the characteristics of isolation and mitigation devices on the response of SDOF vibro-impact systems with two-sided bumpers and gaps via shaking table tests. Struct. Control Health. Monit. e2517 (2020). https://doi.org/10.1002/stc.2517

  58. Stefani, G., De Angelis, M., Andreaus, U.: Experimental dynamic response of a SDOF oscillator constrained by two symmetrically arranged deformable and dissipative bumpers under harmonic base excitation. In: Lacarbonara, W., Balachandran, B., Ma, J., Tenreiro Machado, J. Stepan, G. (eds.) Nonlinear Dynamics and Control, pp. 119–127. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-34747-5_12

  59. Stefani, G., De Angelis, M., Andreaus, U.: Experimental and numerical investigation of base isolated SDOF system impact against bumpers under harmonic base excitation. In: Papadrakakis, M., Fragiadakis, M. (eds) Proceedings of the 7th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN 2019), vol. 2, pp. 3333–3343 (2019). https://doi.org/10.7712/120119.7150.19207

  60. Stefani, G., De Angelis, M., Andreaus, U.: Experimental and numerical response analysis of a unilaterally constrained SDOF system under harmonic base excitation. In: Carcaterra A., Paolone A., Graziani G. (eds) Proceedings of XXIV AIMETA Conference 2019. Lecture Notes in Mechanical Engineering, pp. 1488–1497. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41057-5_120

  61. Naeim, F., Kelly, J.M.: Design of Seismic Isolated Structures: From Theory to Practice. Wiley, Chichester (1999)

    Google Scholar 

Download references

Acknowledgements

The funding was provided by Sapienza Università di Roma (Grant Nos. RM116154C359801B and RP116154F1DB0EAF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulia Stefani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stefani, G., De Angelis, M. & Andreaus, U. Scenarios in the experimental response of a vibro-impact single-degree-of-freedom system and numerical simulations. Nonlinear Dyn 103, 3465–3488 (2021). https://doi.org/10.1007/s11071-020-05791-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05791-4

Keywords

Navigation