Skip to main content
Log in

Dynamic event-based reliable dissipative asynchronous control for stochastic Markov jump systems with general conditional probabilities

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The paper concerns the problem of reliable dissipative asynchronous controller design for a type of stochastic Markov jump systems (MJSs) with general conditional probabilities in the presence of the dynamic event-triggered rule. Since the mode information of the stochastic MJS is impossible to obtain, a reliable asynchronous controller is established such that the phenomena of nonsynchronous modes between the original stochastic MJS and the developed controller is formulated as a hidden Markov model. A novel dynamic event-triggered strategy is constructed to further decrease the data transmission frequency over the communication network. By taking the internal dynamic variable into account, the criteria of stochastically stable with the reliable dissipativity performance for the resulting closed-loop stochastic MJS are provided based on a collection of linear matrix inequalities. Further, the designs of reliable dissipative asynchronous controller and the dynamic event-triggered strategy are developed simultaneously. Lastly, a numerical instance is supplied to elucidate the superiority of proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shen, H., Men, Y., Wu, Z.G., Park, J.: Nonfragile \(H_{\infty }\) control for fuzzy Markovian jump systems under fast sampling singular perturbation. IEEE Trans. Syst. Man. Cybern. Syst. 48(12), 2058–2069 (2018)

    Google Scholar 

  2. Kim, S.H.: Dissipative control of Markovian jump fuzzy systems under nonhomogeneity and asynchronism. Nonlinear Dyn. 97, 629–646 (2019)

    MATH  Google Scholar 

  3. Zhang, J., Raïssi, T., Li, S.: Non-fragile saturation control of nonlinear positive Markov jump systems with time-varying delays. Nonlinear Dyn. (2019). https://doi.org/10.1007/s11071-019-05068-5

    Article  MATH  Google Scholar 

  4. Zhang, B., Zheng, W., Xu, S.: Filtering of Markovian jump delay systems based on a new performance index. IEEE Trans. Circuits Syst. Regul. Pap. 60(5), 1250–1263 (2013)

    MathSciNet  Google Scholar 

  5. Shen, H., Li, F., Xu, S., Sreeram, V.: Slow state variables feedback stabilization for semi-Markov jump systems with singular perturbations. IEEE Trans. Autom. Control 63(8), 2709–2714 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Shen, H., Li, F., Yan, H., Karimi, H.R., Lam, H.K.: Finite-time event-triggered \(H_{\infty }\) control for T-S fuzzy Markov jump systems. IEEE Trans. Fuzzy Syst. 26(5), 3122–3135 (2018)

    Google Scholar 

  7. Zhang, B., Xu, S., Ma, Q., Zhang, Z.: Output-feedback stabilization of singular LPV systems subject to inexact scheduling parameters. Automatica 104, 1–7 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Wang, X., Park, J.H., Zhong, S., Yang, H.: A switched operation approach to sampled-data control stabilization of fuzzy memristive neural networks with time-varying delay. IEEE Trans. Neural Netw. Learn. Syst. (2019). https://doi.org/10.1109/TNNLS.2019.2910574

    Article  Google Scholar 

  9. Wang, X., Park, J.H., Zhao, G., Zhong, S.: An improved fuzzy sampled-data control to stabilization of T–S fuzzy systems with state delays. IEEE Trans. Cybern. (2019). https://doi.org/10.1109/TCYB.2019.2910520

    Article  Google Scholar 

  10. Wang, Y., Zhuang, G., Chen, F.: A dynamic event-triggered \(H_{\infty }\) control for singular Markov jump systems with redundant channels. Int. J. Syst. Sci. 51(1), 158–179 (2020)

    MathSciNet  Google Scholar 

  11. Shen, H., Men, Y., Wu, Z.G., Park, J.H.: Nonfragile \(H _ {\infty }\) control for fuzzy Markovian jump systems under fast sampling singular perturbation. IEEE Trans. Syst. Man Cybern. Syst. 48(12), 2058–2069 (2017)

    Google Scholar 

  12. Wu, Z.G., Shi, P., Shu, Z., Su, H., Lu, R.: Passivity-based asynchronous control for Markov jump systems. IEEE Trans. Autom. Control 62(4), 2020–2025 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Zhuang, G., Xu, S., Zhang, B., Xia, J., Chu, Y., Zou, Y.: Unified filters design for singular Markovian jump systems with time-varying delays. J. Frankl. Inst. 353(15), 3739–3768 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Chang, X.H., Yang, G.H.: Nonfragile \(H_\infty \) filtering of continuous-time fuzzy systems. IEEE Trans. Signal Process. 59(4), 1528–1538 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Chang, X.H., Yang, G.H.: Nonfragile \(H_\infty \) filter design for T–S fuzzy systems in standard form. IEEE Trans. Ind. Electron. 61(7), 3448–3458 (2014)

    Google Scholar 

  16. Wang, Y., Zhuang, G., Chen, X., Wang, Z., Chen, F.: Dynamic event-based finite-time mixed \(H_{\infty }\) and passive asynchronous filtering for T–S fuzzy singular Markov jump systems with general transition rates. Nonlinear Anal. Hybrid Syst. 36, 100874 (2020). https://doi.org/10.1016/j.nahs.2020.100874

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, Y., An, Q., Wang, R., Zhang, S.: Reliable control for event-triggered singular Markov jump systems with partly unknown transition probabilities and actuator faults. J. Frankl. Inst. 356(4), 1828–1855 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Zhuang, G., Xu, S., Zhang, B., Xu, H., Chu, Y.: Robust \(H_{\infty }\) deconvolution filtering for uncertain singular Markovian jump systems with time-varying delays. Int. J. Robust Nonlinear Control 26(12), 2564–2585 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Wu, Z.G., Shi, P., Su, H., Chu, J.: Stochastic synchronization of Markovian jump neural networks with time-varying delay using sampled data. IEEE Trans. Cybern. 43(6), 1796–1806 (2013)

    Google Scholar 

  20. Zhuang, G., Ma, Q., Zhang, B., Xu, S., Xia, J.: Admissibility and stabilization of stochastic singular Markovian jump systems with time delays. Syst. Control Lett. 114, 1–10 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Wang, Z., Wang, X., Li, Y., Huang, X.: Stability and Hopf bifurcation of fractional-order complex-valued single neuron model with time delay. Int. J. Bifurc. Chaos 27(13), 1750209 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Sun, H., Li, Y., Zong, G., Hou, L.: Disturbance attenuation and rejection for stochastic Markovian jump system with partially known transition probabilities. Automatica 89, 349–357 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Chang, X.H., Huang, R., Park, J.H.: Robust guaranteed cost control under digital communication channels. IEEE Trans. Ind. Inform. 16(1), 319–327 (2020)

    Google Scholar 

  24. Chang, X.H., Liu, R.R., Park, J.H.: A further study on output feedback \(H_{\infty }\) control for discrete-time systems. IEEE Trans. Circuits Syst. II: Express Briefs 67(2), 305–309 (2020)

    Google Scholar 

  25. Zhuang, G., Xu, S., Xia, J., Ma, Q., Zhang, Z.: Non-fragile delay feedback control for neutral stochastic Markovian jump systems with time-varying delays. Appl. Math. Comput. 355, 21–32 (2019)

    MathSciNet  MATH  Google Scholar 

  26. Kopetz, H.: Event-triggered versus time-triggered real-time systems. In: Operating Systems of the 90s and Beyond, Springer, Berlin, pp. 86–101 (1991)

  27. Yue, D., Tian, E., Han, Q.L.: A delay system method for designing event-triggered controllers of networked control systems. IEEE Trans. Autom. Control 58(2), 475–481 (2013)

    MathSciNet  MATH  Google Scholar 

  28. Wang, J., Chen, M., Shen, H., Park, J.H., Wu, Z.G.: A Markov jump model approach to reliable event-triggered retarded dynamic output feedback \(H_{\infty }\) control for networked systems. Nonlinear Anal. Hybrid Syst 26, 137–150 (2017)

    MathSciNet  MATH  Google Scholar 

  29. Wang, R., Hou, L., Zong, G., Fei, S., Yang, D.: Stability and stabilization of continuous-time switched systems: a multiple discontinuous convex Lyapunov function approach. Int. J. Robust Nonlinear Control 29(5), 1499–1514 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Wang, Y., Chen, F., Zhuang, G.M., Yang, G.: Dynamic event-based mixed \(H_{\infty }\) and dissipative asynchronous control for Markov jump singularly perturbed systems. Appl. Math. Comput. 386, 125443 (2020). https://doi.org/10.1016/j.amc.2020.125443

    Article  MathSciNet  Google Scholar 

  31. Yun, H., Sung, J.: Event-triggered output-feedback tracking of a class of nonlinear systems with unknown time delays. Nonlinear Dyn. (2019). https://doi.org/10.1007/s11071-019-04832-x

    Article  Google Scholar 

  32. Wang, J., Zhang, X.M., Lin, Y., Ge, X., Han, Q.L.: Event-triggered dissipative control for networked stochastic systems under non-uniform sampling. Inf. Sci. 447, 216–228 (2018)

    Google Scholar 

  33. Girard, A.: Dynamic triggering mechanisms for event-triggered control. IEEE Trans. Autom. Control 60(7), 1992–1997 (2015)

    MathSciNet  MATH  Google Scholar 

  34. Dolk, V., Heemels, M.: Event-triggered control systems under packet losses. Automatica 80, 143–155 (2017)

    MathSciNet  MATH  Google Scholar 

  35. Liu, D., Yang, G.H.: Dynamic event-triggered control for linear time-invariant systems with gain-performance. Int. J. Robust Nonlinear Control 29(2), 507–518 (2019)

    MathSciNet  MATH  Google Scholar 

  36. Dolk, V.S., Borgers, D.P., Heemels, W.P.M.H.: Output-based and decentralized dynamic event-triggered control with guaranteed \(L_p\)-gain performance and zeno-freeness. IEEE Trans. Autom. Control 62(1), 34–49 (2017)

    MATH  Google Scholar 

  37. Willems, J.C.: Dissipative dynamical systems-part I: general theory. Arch. Rational Mech. Anal. 45(5), 321–351 (1972)

    MathSciNet  MATH  Google Scholar 

  38. Willems, J.C.: Dissipative dynamical systems. Eur. J. Control 13(2–3), 134–151 (2007)

    MATH  Google Scholar 

  39. Sakthivel, R., Joby Maya, Marshal Anthoni S.: Resilient dissipative based controller for stochastic systems with randomly occurring gain fluctuations. Inf. Sci. 418–419, 447–462 (2017)

    MATH  Google Scholar 

  40. Liu, Y.J., Guo, B.Z., Park, J.H., Lee, S.: Event-based reliable dissipative filtering for T–S fuzzy systems with asynchronous constraints. IEEE Trans. Fuzzy Syst. 26(4), 2089–2098 (2018)

    Google Scholar 

  41. Tharanidharan, V., Sakthivel, R., Ma, Y.K., Susana, Ramya L., Marshal, Anthoni S.: Finite-time decentralized non-fragile dissipative control for large-scale systems against actuator saturation. ISA Trans. 91, 90–98 (2019)

    Google Scholar 

  42. Zhang, X., Han, Q.: A decentralized event-triggered dissipative control scheme for systems with multiple sensors to sample the system outputs. IEEE Trans. Cybern. 46(12), 2745–2757 (2015)

    Google Scholar 

  43. Liu, Y.J., Guo, B.Z., Park, J.H., Lee, S.: Nonfragile exponential synchronization of delayed complex dynamical networks with memory sampled-data control. IEEE Trans. Neural Netw. 29(1), 118–128 (2018)

    MathSciNet  Google Scholar 

  44. Liu, Y.J., Park, J.H., Guo, B.Z., Shu, Y.J.: Further results on stabilization of chaotic systems based on fuzzy memory sampled-data control. IEEE Trans. Fuzzy Syst. 26(2), 1040–1045 (2018)

    Google Scholar 

  45. Wang, J., Zhang, X.M., Han, Q.L.: Event-triggered generalized dissipativity filtering for neural networks with time-varying delays. IEEE Trans. Neural Netw. Learn. Syst. 27(1), 77–88 (2015)

    MathSciNet  Google Scholar 

  46. Li, L., Wang, Z., Li, Y., Shen, H., Lu, J.: Hopf bifurcation analysis of a complex-valued neural network model with discrete and distributed delays. Appl. Math. Comput. 330, 152–169 (2018)

    MathSciNet  MATH  Google Scholar 

  47. Liu, Y., Guo, B.Z., Park, J.H., Lee, S.: Event-based reliable dissipative filtering for T–S fuzzy systems with asynchronous constraints. IEEE Trans. Fuzzy Syst. 26(4), 2089–2098 (2017)

    Google Scholar 

  48. Zha, L., Fang, J.A., Liu, J., Tian, E.: Reliable control for hybrid-driven T–S fuzzy systems with actuator faults and probabilistic nonlinear perturbations. J. Frankl. Inst. 354(8), 3267–3288 (2017)

    MathSciNet  MATH  Google Scholar 

  49. Peng, C., Han, Q.L., Yue, D.: To transmit or not to transmit: a discrete event-triggered communication scheme for networked Takagi–Sugeno fuzzy systems. IEEE Trans. Fuzzy Syst. 21(1), 164–170 (2013)

    Google Scholar 

  50. Borgers, D.P., Dolk, V.S., Heemels, M.W.: Dynamic periodic event-triggered control for linear systems. In: Proceedings of the 20th International Conference on Hybrid Systems: Computation and Control, pp. 179–186 ACM (2017)

  51. Khan, G.D., Chen, Z., Zhu, L.: A new approach for event-triggered stabilization and output regulation of nonlinear systems. IEEE Trans. Autom. Control (2019). https://doi.org/10.1109/TAC.2019.2949894

    Article  Google Scholar 

  52. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China (Nos. 61773191, 61703225, 61803241), and Support Plan for Outstanding Youth Innovation Team in Shandong Higher Education Institutions under Grant 2019KJI010; Talent Introduction and Cultivation Plan for Outstanding Youth Innovation Team in Shandong Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanqian Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Chen, F. & Zhuang, G. Dynamic event-based reliable dissipative asynchronous control for stochastic Markov jump systems with general conditional probabilities. Nonlinear Dyn 101, 465–485 (2020). https://doi.org/10.1007/s11071-020-05786-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05786-1

Keywords

Navigation