Skip to main content
Log in

A unified model for electrostatic sensors in fluid media

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript


We present a unified model of electrostatic sensors comprising cantilever microbeam resonators in fluid media. The model couples Euler–Bernoulli beam equation to the nonlinear Reynolds equation. Static, damped eigenvalue, and dynamic reduced-order models were developed and validated by comparing a nonlinear frequency response of a gas sensor to its experimentally measured counterpart. Experiments were conducted to verify the capability of the developed model to predict the out-of-plane and in-plane natural frequencies of the sensor. The models were also used to investigate the potential operation of electrostatic chemical sensors based on different sensing mechanisms. While in-plane and out-of-plane vibration modes were found to be viable alternatives for resonant gas sensors, only in-plane modes were suitable to implement resonant chemical sensors due to the added mass and damping of liquid media. Similarly, higher-order modes were found more sensitive than lower order modes. Further, evidence was found for elastic interaction between out-of-plane modes and liquids in the channel underneath them but none for in-plane modes. Finally, the model predicts that in-plane modes provide the multi-valuedness necessary to implement bifurcation chemical sensors in liquid media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others


  1. Decuzzi, P.: Dynamic response of microcantilever-based sensors in a fluidic chamber. J. Appl. Phys. 101, 024303 (2007)

    Article  Google Scholar 

  2. Jaber, N., Ilyas, S., Shekhah, O., Eddaoudi, M., Younis, M.I.: Multimode excitation of a metal organics frameworks coated microbeam for smart gas sensing and actuation. Sens. Actuators, A 283, 254–262 (2018)

    Article  Google Scholar 

  3. Voiculescu, I., Zaghloul, M.E., McGill, R.A., Houser, E.J., Fedder, G.K.: Electrostatically actuated resonant microcantilever beam in cmos technology for the detection of chemical weapons. IEEE Sens. J. 5, 641–647 (2005)

    Article  Google Scholar 

  4. Vancura, C., Dufour, I., Heinrich, S.M., Josse, F., Hierlemann, A.: Analysis of resonating microcantilevers operating in a viscous liquid environment. Sens. Actuators A 141, 43–51 (2008)

    Article  Google Scholar 

  5. Wenzel, M.J., Josse, F., Heinrich, S.M.: Deflection of a viscoelastic cantilever under a uniform surface stress: applications to static-mode microcantilever sensors undergoing adsorption. J. Appl. Phys. 105, 064903 (2009)

    Article  Google Scholar 

  6. Dufour, I., Lemaire, E., Caillard, B., Debeda, H., Lucat, C., Heinrich, S.M., Josse, F., Brand, O.: Effect of hydrodynamic force on microcanilever vibrations: applications to liquid-phase chemical sensing. Sens. Actuators B: Chem. 192, 664–672 (2014)

    Article  Google Scholar 

  7. Bouchaala, A., Jaber, N., Yassine, O., Shekhah, O., Chernikova, V., Eddaoudi, M., Younis, M.I.: Nonlinear-based MEMS sensors and active switches for gas detection. Sensors 16, 758 (2016)

    Article  Google Scholar 

  8. Heinrich, S.M., Wenzel, M.J., Josse, F., Dufour, I.: An analytical model for transient deformation of viscoelastically coated beams: applications to static-mode microcantilever chemical sensors. J. Appl. Phys. 105, 124903 (2009)

    Article  Google Scholar 

  9. Nguyen, V.-N., Baguet, S., Lamarque, C.-H., Dufour, R.: Bifurcation-based micro-/nanoelectromechanical mass detection. Nonlinear Dyn. 79(1), 647–662 (2015)

    Article  Google Scholar 

  10. Al-Ghamdi, M.S., Khater, M.E., Stewart, K.M.E., Alneamy, A., Abdel-Rahman, E.M., Penlidis, A.: Dynamic bifurcation MEMS gas sensors. J. Micromech. Microeng. 29(1), 015005 (2018)

    Article  Google Scholar 

  11. Hayward, G.: A transverse shear model of a piezoelectric chemical sensor. J. Appl. Phys. 83, 2194 (1998)

    Article  Google Scholar 

  12. Naik, T., Longmire, E.K., Mantell, S.C.: Dynamic response of a cantilever in liquid near a solid wall. Sens. Actuators A 102, 240–254 (2003)

    Article  Google Scholar 

  13. Liang, C.C., Liao, C.C., Tai, Y.S., Lai, W.H.: The free vibration analysis of submerged cantilever plates. Ocean Eng. 28, 1225–1245 (2001)

    Article  Google Scholar 

  14. Lindholm, U.S., Kana, D.D., Chu, W.H., Abramson, H.N.: Elastic vibration characteristics of cantilever plates in water. J. Ship Res. 9, 11–12 (1965)

    Google Scholar 

  15. Golzar, F.G., Shabani, R., Hatami, H., Rezazadeh, G.: Dynamic response of an electrostatically-actuated micro-beam in an incompressible viscuous fluid cavity. J. Microelectromech. Syst. 23, 555–562 (2014)

    Article  Google Scholar 

  16. Shabani, R., Hatami, H., Golzar, F.G., Tariverdilo, S., Rezazadeh, G.: Coupled vibrations of a canilever micro-beam submerged in a bounded incompressible fluid domain. Acta Mech. 224, 841–850 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Beardslee, L.A., Demirci, K.S., Luzuinova, Y., Mizaikoff, B., Heinrich, S.M., Josse, F., Brand, O.: Liquid-phase chemical sensing using lateral mode resonant cantilevers. Anal. Chem. 82, 7542–7549 (2010)

    Article  Google Scholar 

  18. Dufour, I., Heinrich, S.M., Josse, F.: Theoretical analysis of strong-axis bending mode vibrations for resonant microcantilever (bio) chemical sensors in gas or liquid phase. J. Microelectromech. Syst. 16(1), 44–49 (2007)

    Article  Google Scholar 

  19. Dufour, I., Josse, F., Heinrich, S.M., Lucat, C., Ayela, C., Ménil, F., Brand, O.: Unconventional uses of microcantilevers as chemical sensors in gas and liquid media. Sens. Actuators B: Chem. 170, 115–121 (2012)

    Article  Google Scholar 

  20. Najar, F., Ghommem, M., Abdelkefi, A.: Multifidelity modeling and comparative analysis of electrically coupled microbeams under squeeze-film damping effect. Nonlinear Dyn. 99(1), 445–460 (2020)

    Article  MATH  Google Scholar 

  21. Palmer, H.B.: The capacitance of a parallel-plate capacitor by the Schwartz–Christoffel transformation. Electr. Eng. 56(3), 363–368 (1937)

    Article  Google Scholar 

  22. Maali, A., Hurth, C., Boisgard, R., Jai, C., Cohen-Bouhacina, T., Aimé, J.-P.: Hydrodynamics of oscillating atomic force microscopy cantilevers in viscous fluids. J. Appl. Phys. 97(7), 074907 (2005)

    Article  Google Scholar 

  23. Youssry, M., Belmiloud, N., Caillard, B., Ayela, C., Pellet, C., Dufour, I.: A straightforward determination of fluid viscosity and density using microcantilevers: from experimental data to analytical expressions. Sens. Actuators, A 172(1), 40–46 (2011)

    Article  Google Scholar 

  24. Starr, J.B.: Squeeze-film damping in solid-state accelerometers. In: IEEE 4th Technical Digest on Solid-State Sensor and Actuator Workshop, IEEE, pp. 44–47 (1990)

  25. Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics. Springer, Berlin (2011)

    Book  Google Scholar 

  26. Sassi, S.B., Khater, M.E., Najar, F., Abdel-Rahman, E.M.: A square wave is the most efficient and reliable waveform for resonant actuation of micro switches. J. Micromech. Microeng. 28, 1–14 (2018)

    Google Scholar 

  27. Ghommem, M., Abdelkefi, A.: Novel design of microgyroscopes employing electrostatic actuation and resistance-change based sensing. J. Sound Vib. 411, 278–288 (2017)

    Article  Google Scholar 

  28. Ghommem, M., Abdelkefi, A.: Nonlinear analysis of rotating nanocrystalline silicon microbeams for microgyroscope applications. Microsyst. Technol. 23, 5931–5946 (2017)

    Article  Google Scholar 

  29. Sassi, S.B., Najar, F.: Strong nonlinear dynamics of MEMS and NEMS structures based on semi-analytical approaches. Commun. Nonlinear Sci. Numer. Simul. 61, 1–21 (2018)

    Article  MathSciNet  Google Scholar 

  30. Meirovitch, L.: Fundamentals of Vibrations. Waveland Press, Long Grove (2010)

    Google Scholar 

  31. Najar, F., Choura, S., Abdel-Rahman, E.M., El-Borgi, S., Nayfeh, A.H.: Dynamic analysis of variable-geometry electrostatic microactuators. J. Micromech. Microeng. 16, 2449–2457 (2006)

    Article  MATH  Google Scholar 

  32. Samaali, H., Najar, F., Choura, S.: Dynamic study of a capacitive MEMS switch with double clamped-clamped microbeams. Shock Vib. (2014)

  33. Cowen, A., Hardy, B., Mahadevan, R., Wilcenski, S.: Polymumps Design Handbook. MEMSCAP Inc., Durham (2005)

    Google Scholar 

  34. Bakri-Kassem, M., Dhaouadi, R., Arabi, M., Vamegh, S., Abdel-Rahman, E.M.: Nonlinear dynamic modeling of a v-shaped metal based thermally driven mems actuator for rf switches. J. Micromech. Microeng. 28, 054004 (2018)

    Article  Google Scholar 

  35. Sader, J.E.: Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J. Appl. Phys. 84(1), 64–76 (1998)

    Article  Google Scholar 

  36. Khater, M., Akhtar, S., Park, S., Ozdemir, S., Abdel-Rahman, E., Vyasarayani, C., Yavuz, M.: Contact damping in microelectromechanical actuators. Appl. Phys. Lett. 105(25), 253501 (2014)

    Article  Google Scholar 

  37. Blech, J.: On isothermal squeeze films. J. Lubr. Technol. 105(4), 615–620 (1983)

    Article  Google Scholar 

  38. Al-Ghamdi, M., Saritas, R., Stewart, K., Scott, A., Khater, M., Alneamy, A., Abdel-Aziz, A., Nafissi, H., Abdel-Rahman, E.: Aqueous media electrostatic MEMS sensors. In: 20th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS). IEEE, Berlin, Germany (2019)

  39. Abdel-Rahman, E.M., Younis, M.I., Nayfeh, A.H.: Characterization of the mechanical behavior of an electrically actuated microbeam. J. Micromech. Microeng. 12(6), 759 (2002)

    Article  Google Scholar 

Download references


The author M. Ghommem gratefully acknowledges the financial support via the Biosciences and Bioengineering Research Institute Grant EN0277-BBRI18.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Mehdi Ghommem.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghommem, M., Najar, F., Arabi, M. et al. A unified model for electrostatic sensors in fluid media. Nonlinear Dyn 101, 271–291 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: