Skip to main content
Log in

Mittag–Leffler stability of nabla discrete fractional-order dynamic systems

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In the present study, the definition of discrete Mittag–Leffler stability is derived to characterize convergence rule of the pseudostates for nabla discrete fractional-order dynamic systems. Applying the Lyapunov stability theory, some new criteria are proposed to determine asymptotic stability of the zero equilibrium. In addition, by applying fractional comparison principle, the results are extended from Caputo discrete fractional-order systems to Riemann–Liouville systems. Moreover, a useful inequality is proposed to further improve the availability of the presented methods. Finally, some meticulously designed simulations are provided to verify the correctness and practicability of the elaborated stability notions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Machado, J.T., Galhano, A.M., Trujillo, J.J.: On development of fractional calculus during the last fifty years. Scientometrics 98(1), 577–582 (2014)

    Article  Google Scholar 

  2. Xiong, R., Tian, J.P., Shen, W.X., Sun, F.C.: A novel fractional order model for state of charge estimation in lithium ion batteries. IEEE Trans. Veh. Technol. 68(5), 4130–4139 (2018)

    Article  Google Scholar 

  3. Ma, X., Xie, M., Wu, W.Q., Zeng, B., Wang, Y., Wu, X.X.: The novel fractional discrete multivariate grey system model and its applications. Appl. Math. Modell. 70, 402–424 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wei, Y.H., Chen, Y.Q., Cheng, S.S., Wang, Y.: A note on short memory principle of fractional calculus. Fract. Calc. Appl. Anal. 20(6), 1382–1404 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borah, J., Bora, S.N.: Existence of mild solution of a class of nonlocal fractional order differential equation with not instantaneous impulses. Fract. Calc. Appl. Anal. 22(2), 495–508 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Trigeassou, J.C., Maamri, N., Oustaloup, A.: The infinite state approach: origin and necessity. Comput. Math. Appl. 66(5), 892–907 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhao, D., Luo, M.: Representations of acting processes and memory effects: general fractional derivative and its application to theory of heat conduction with finite wave speeds. Appl. Math. Comput. 346, 531–544 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Giusti, A., Colombaro, I.: Prabhakar-like fractional viscoelasticity. Commun. Nonlinear Sci. Numer. Simul. 56, 138–143 (2018)

    Article  MathSciNet  Google Scholar 

  9. Victor, S., Malti, R., Garnier, H., Oustaloup, A.: Parameter and differentiation order estimation in fractional models. Automatica 49(4), 926–935 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wharmby, A.W.: Fractional lumped capacitance. Fract. Calc. Appl. Anal. 21(4), 1104–1119 (2018)

    Article  MathSciNet  Google Scholar 

  11. Sun, G.H., Wu, L.G., Kuang, Z., Ma, Z.Q., Liu, J.X.: Practical tracking control of linear motor via fractional-order sliding mode. Automatica 94, 221–235 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dabiri, A., Butcher, E.A., Poursina, M., Nazari, M.: Optimal periodic-gain fractional delayed state feedback control for linear fractional periodic time-delayed systems. IEEE Trans. Autom. Control 63(4), 989–1002 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sun, H.G., Zhang, Y., Baleanu, D., Chen, W., Chen, Y.Q.: A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 64, 213–231 (2018)

    Article  Google Scholar 

  14. Matignon, D.: Stability results for fractional differential equations with applications to control processing. In: Computational Engineering in Systems and Application Multiconference, pp. 963–968. Lille, France (1996)

  15. Li, Y., Chen, Y.Q., Podlubny, I.: Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 45(8), 1965–1969 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, Y., Chen, Y.Q., Podlubny, I.: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comput. Math. Appl. 59(5), 1810–1821 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Trigeassou, J.C., Maamri, N., Sabatier, J., Oustaloup, A.: A Lyapunov approach to the stability of fractional differential equations. Signal Processing 91(3), 437–445 (2011)

    Article  MATH  Google Scholar 

  18. Ding, D.S., Qi, D.L., Peng, J.M., Wang, Q.: Asymptotic pseudo-state stabilization of commensurate fractional-order nonlinear systems with additive disturbance. Nonlinear Dyn. 81(1–2), 667–677 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhang, Z., Toshimitsu, U., Zhao, Y.A., Zhang, J.: Novel stability condition for delayed fractional-order composite systems based on vector Lyapunov function. Nonlinear Dyn. 99(2), 1253–1267 (2020)

    Article  Google Scholar 

  20. Aguila-Camacho, N., Duarte-Mermoud, M.A., Gallegos, J.A.: Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 19(9), 2951–2957 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Duarte-Mermoud, M.A., Aguila-Camacho, N., Gallegos, J.A., Castro-Linares, R.: Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 22(1–3), 650–659 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, S., Wu, X., Zhou, X.F., Jiang, W.: Asymptotical stability of Riemann-Liouville fractional nonlinear systems. Nonlinear Dyn. 86(1), 65–71 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dai, H., Chen, W.S.: New power law inequalities for fractional derivative and stability analysis of fractional order systems. Nonlinear Dyn. 87(3), 1531–1542 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Alagoz, B.B.: Hurwitz stability analysis of fractional order LTI systems according to principal characteristic equations. ISA Trans. 70, 7–15 (2017)

    Article  Google Scholar 

  25. Li, M.M., Wang, J.R.: Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equations. Appl. Math. Comput. 324, 254–265 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Tuan, H.T., Trinh, H.: A linearized stability theorem for nonlinear delay fractional differential equations. IEEE Trans. Autom. Control 63(9), 3180–3186 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Baleanu, D., Wu, G.C., Bai, Y.R., Chen, F.L.: Stability analysis of Caputo-like discrete fractional systems. Commun. Nonlinear Sci. Numer. Simul. 48, 520–530 (2017)

    Article  MathSciNet  Google Scholar 

  28. Wu, G.C., Baleanu, D., Luo, W.H.: Lyapunov functions for Riemann–Liouville-like fractional difference equations. Appl. Math. Comput. 314, 228–236 (2017)

    MathSciNet  MATH  Google Scholar 

  29. Wyrwas, M., Mozyrska, D.: On Mittag–Leffler stability of fractional order difference systems. In: Latawiec, K.J., Łukaniszyn, M., Stanisławski, R. (eds.) 6th Conference on Non-integer Order Calculus and Its Applications, Opole, Poland, pp. 209–220. Springer (2014)

  30. Wei, Y.H., Chen, Y.Q., Liu, T.Y., Wang, Y.: Lyapunov functions for nabla discrete fractional order systems. ISA Trans. 88, 82–90 (2019)

    Article  Google Scholar 

  31. Goodrich, C.S., Peterson, A.C.: Discrete Fractional Calculus. Springer, Cham (2015)

    Book  MATH  Google Scholar 

  32. Wei, Y.H., Chen, Y.Q., Wang, J.C., Wang, Y.: Analysis and description of the infinite-dimensional nature for nabla discrete fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 72, 472–492 (2019)

    Article  MathSciNet  Google Scholar 

  33. Goodrich, C.S.: Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions. Comput. Math. Appl. 61(2), 191–202 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Geiselhart, R., Noroozi, N.: Equivalent types of ISS Lyapunov functions for discontinuous discrete-time systems. Automatica 84, 227–231 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work described in this paper was supported by the National Natural Science Foundation of China (61573332, 61601431, 61973291) and the fund of China Scholarship Council (201806345002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingdong Wei.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Wei, Y., Chen, Y. et al. Mittag–Leffler stability of nabla discrete fractional-order dynamic systems. Nonlinear Dyn 101, 407–417 (2020). https://doi.org/10.1007/s11071-020-05776-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05776-3

Keywords

Navigation