Skip to main content
Log in

Fusion of PDF compensation and gain-scheduled control for discrete stochastic systems with randomly occurring nonlinearities

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A fusion control strategy, including probability density function (PDF) compensation and gain-scheduled control, is proposed for discrete-time stochastic systems with randomly occurring nonlinearities. Usually, it is difficult to drive the tracking error strictly to zero in a random environment. So the proposed method aims to stabilize the closed-loop system in the exponentially mean square sense and guarantee the distribution of output error as close to the expected PDF as possible. The parameters of the gain-scheduled controller are obtained by solving appropriate linear matrix inequalities, and the parameters of the PDF compensator are updated in real time according to the Kullback–Leibler divergence between the PDF of output error and the desired one. The proposed method has the characteristics of low conservativeness and easy to implement. The effectiveness of the proposed method is shown by two examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Banos, D.R., Cordoni, F.: Stochastic systems with memory and jumps. J. Differ. Equ. 266(9), 5772–5820 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Guo, R., Guo, Y.: Stochastic modelling of the hydrologic operation of rainwater harvesting systems. J. Hydrol. 562, 30–39 (2018)

    Article  Google Scholar 

  3. Samuelson, A., Haigh, A.: Stochastic model for maintenance in continuously deteriorating systems. Eur. J. Oper. Res. 259(3), 1169–1179 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hu, J., Wang, Z.D., Gao, H.J.: Joint state and fault estimation for time-varying nonlinear systems with randomly occurring faults and sensor saturations. Automatica 97, 150–160 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Guo, B.Z., Wu, Z.H., Zhou, H.C.: Active disturbance rejection control approach to output-feedback stabilization of a class of uncertain nonlinear systems subject to stochastic disturbance. IEEE Trans. Autom. Control 61(6), 1613–1618 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Xu, X., Chen, H., Lian, C.: Learning-based predictive control for discrete-time nonlinear systems with stochastic disturbances. IEEE Trans. Neural Netw. Learn. Syst. 29(12), 6202–6213 (2018)

    Article  MathSciNet  Google Scholar 

  7. Hou, L., Chen, D.Y.: Finite-time boundedness control for nonlinear networked systems with randomly occurring multi-distributed delays and missing measurements. Math. Probl. Eng. 2018, 5109646 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Achille, N., Alireza, K.: Robust control of systems with sector nonlinearities via convex optimization: a data\(-\)driven approach. Int. J. Robust Nonlinear Control 29(5), 1361–1376 (2019)

    MathSciNet  MATH  Google Scholar 

  9. Zhang, Y.J., Liu, X.J.: Dissipativity-based resilient asynchronous control for Markov jump systems with sector-bounded nonlinearities. Trans. Inst. Meas. Control 40, 2821–2830 (2018)

    Article  Google Scholar 

  10. Gao, H., Chen, T.: H\(\infty \) estimation for uncertain systems with limited communication capacity. IEEE Trans. Autom. Control 52(11), 2070–2084 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Cherifi, A., Guelton, K., Arcese, L., Leite, V.J.: Global non-quadratic D-stabilization of Takagi–Sugeno systems with piecewise continuous membership functions. Appl. Math. Comput. 351, 23–36 (2019)

    MathSciNet  MATH  Google Scholar 

  12. Pierre, Apkarian, Pellanda, P.C., Tuan, H.D.: Mixed H2/H\(\infty \) multi-channel linear parameter-varying control in discrete time. Syst. Control Lett. 41(5), 333–346 (2000)

    Google Scholar 

  13. Wang, L.C., Wei, G.L., Li, W.Y.: Probability-dependent H\(\infty \) synchronization control for dynamical networks with randomly varying nonlinearities. Neurocomputing 133, 369–376 (2014)

    Google Scholar 

  14. Wei, G., Wang, Z., Shen, B.: Probability-dependent gain-scheduled control for discrete stochastic delayed systems with randomly occurring nonlinearities. Int. J. Robust Nonlinear Control 23(7), 815–826 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Min, H.F., Xu, S.Y., Zhang, B.Y., Ma, Q.: Globally adaptive control for stochastic nonlinear time-delay systems with perturbations and its application. Automatica 102, 105–110 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhou, P., Wang, C.Y., Li, M.J., Wang, H., Wu, Y.J., Chai, T.Y.: Modeling error PDF optimization based wavelet neural network modeling of dynamic system and its application in blast furnace ironmaking. Neurocomputing 285, 167–175 (2018)

    Article  Google Scholar 

  17. Ren, M.F., Zhang, Q.C., Zhang, J.H.: An introductory survey of probability density function control. Syst. Sci. Control Eng. 7(1), 158–170 (2019)

    Article  Google Scholar 

  18. Wang, H., Afshar, P., Yue,, H.: ILC-based generalised PI control for output pdf of stochastic systems using LMI and RBF neural networks. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 5048–5053. IEEE (2006)

  19. Liu, Y., Wang, H., Hou, C.H.: UKF based nonlinear filtering using minimum entropy criterion. IEEE Trans. Signal Process. 61(20), 4988–4999 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Guo, L., Wang, H.: Pseudo-PID tracking control for a class of output pdfs of general non-Gaussian stochastic systems. In: Proceedings of the American Control Conference, pp. 362–367 (2003)

  21. Skaf, Zakwan, Wang, H., Guo, L.: Fault tolerant control based on stochastic distribution via RBF neural networks. J. Syst. Eng. Electron. 22(1), 63–69 (2011)

    Article  Google Scholar 

  22. Wang, H., Lin, W.: Applying observer based FDI techniques to detect faults in dynamic and bounded stochastic distributions. Int. J. Control 72(15), 1424–1436 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhou, Y., Zhang, Q., Wang, H.: EKF-based enhanced performance controller design for nonlinear stochastic systems. IEEE Trans. Autom. Control 63(4), 1155–1162 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gu, Y., Li, X.J.: Fault detection for sector-bounded non-linear systems with servo inputs and sensor stuck faults. J. Control Decis. 6(3), 147–165 (2019)

    Article  MathSciNet  Google Scholar 

  25. Yi, X., Saif, M.: Sliding mode observer for nonlinear uncertain systems. IEEE Trans. Autom. Control 46(12), 2012–2017 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Choi, H.H.: LMI-based sliding surface design for integral sliding mode control of mismatched uncertain systems. IEEE Trans. Autom. Control 52(4), 736–742 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bartolini, G., Fridman, L., Pisano, A., Usai, E.: Modern Sliding Mode Control Theory, New Perspective and Applications. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  28. Liu, Yl, Wang, A.P., Guo, L., Wang, H.: An error-entropy minimization algorithm for tracking control of nonlinear stochastic systems with non-Gaussian variables. IFAC-PapersOnLine 50(1), 10407–10412 (2017)

    Article  Google Scholar 

  29. Liu, Y., Wang, H., Hou, C.: Sliding-mode control design for nonlinear systems using probability density function shaping. IEEE Trans. Neural Netw. Learn. Syst. 25(2), 332–343 (2014)

    Article  Google Scholar 

  30. Wang, Z.D., Yang, F.W., Ho, D.W., Liu, X.H.: Robust \({H}_{\infty }\) filtering for stochastic time-delay systems with missing measurements. IEEE Trans. Signal Process. 54(7), 2579–2587 (2006)

    MATH  Google Scholar 

  31. Shimomura, T., Kubotani, T.: Gain-scheduled control under common Lyapunov functions: conservatism revisited. In: American Control Conference (2005)

  32. Souza, C.E.D., Trofino, A., No, R.T., Oliveira, J.D.: Robust control of uncertain linear systems via parameter-dependent Lyapunov functions. In: IEEE Conference on Decision and Control (2007)

  33. Zhou, J., Wang, Y., Zheng, X., Wang, Z., Shen, H.: Weighted H\(\infty \) consensus design for stochastic multi-agent systems subject to external disturbances and adt switching topologies. Nonlinear Dyn. 96(22), 853–868 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61973023, 61573050) and Beijing Natural Science Foundation (4202052).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Wang or Jinglin Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, L., Wang, J., Zhou, J. et al. Fusion of PDF compensation and gain-scheduled control for discrete stochastic systems with randomly occurring nonlinearities. Nonlinear Dyn 101, 393–406 (2020). https://doi.org/10.1007/s11071-020-05773-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05773-6

Keywords

Navigation