Skip to main content
Log in

Fractional-order adaptive fault-tolerant control for a class of general nonlinear systems

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes a series of fractional-order control methods (FOCMs) based on fractional calculus (FC) for a class of general nonlinear systems. In order to deal with the nonlinearities and uncertainties caused by both external and internal factors, the designed control schemes are adaptive, robust, fault-tolerant and do not involve detailed information of the system model. Besides, FC is combined to improve the control performance, especially in higher control accuracy, better anti-interference ability and stronger robustness. For a comprehensive consideration of the practical systems, three different actuator conditions are separately discussed, and the FOCMs are established aiming at these three different situations, respectively, and proved by theoretical analysis. The inverted pendulum system is adopted as simulation object, and the fractional-order schemes are verified and compared with integer-order controller and traditional PID controller. Simulation results make it clear that the proposed FOCMs are superior to other two schemes in control precision, robustness and anti-interference ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aström, K.J., Hägglund, T., Hang, C.C., et al.: Automatic tuning and adaptation for PID controllers-a survey. Control. Eng. Pract. 1(4), 699–714 (1993)

    Article  Google Scholar 

  2. Ang, K.H., Chong, G., Li, Y.: PID control system analysis, design, and technology. IEEE Trans. Control. Syst. Technol. 13(4), 559–576 (2005)

    Article  Google Scholar 

  3. Wang, L.X.: Stable adaptive fuzzy control of nonlinear systems. IEEE Trans. Fuzzy. Syst. 1(2), 146–155 (1993)

    Article  Google Scholar 

  4. Shtessel, Y.B., Zinober, A.S.I., Shkolnikov, I.: Sliding mode control for nonlinear systems with output delay via method of stable system center. Trans. Am. Soc. Mech. Eng. J. Dyn. Syst. Meas. Control. 125(2), 253–256 (2003)

    Article  Google Scholar 

  5. Hua, C., Guan, X., Shi, P.: Robust backstepping control for a class of time delayed systems. IEEE Trans. Autom. Control. 50(6), 894–899 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, W.H., Ballance, D.J., Gawthrop, P.J.: Optimal control of nonlinear systems: a predictive control approach. Automatica 39(4), 633–641 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Yue, C., Chen, H., Qian, L., et al.: Adaptive sliding-mode tracking control for an uncertain nonlinear SISO servo system with a disturbance observer. J. Shanghai Jiaotong Univ. Sci. 23(3), 376–383 (2018)

    Article  Google Scholar 

  8. Chen, M., Shao, S.Y., Jiang, B.: Adaptive neural control of uncertain nonlinear systems using disturbance observer. IEEE Trans. Cybern. 47(10), 3110–3123 (2017)

    Article  Google Scholar 

  9. Zhai, D., Xi, C., Dong, J., et al.: Adaptive fuzzy fault-tolerant tracking control of uncertain nonlinear time-varying delay systems. IEEE Trans. Syst. Man. Cybern. Syst. (2018). https://doi.org/10.1109/TSMC.2018.2789441

    Article  Google Scholar 

  10. Nie, Z., Song, Y., He, L., et al.: Adaptive fault-tolerant control for uncertain nonlinear system with guaranteed pre-described performance. In: 29th Chinese Control and Decision Conference (CCDC). pp. 28–33 (2017)

  11. Abootalebi, A., Sheikholeslam, F., Hosseinnia, S.: Adaptive reliable \(H\infty \) control of uncertain affine nonlinear systems. Int. J. Control. Autom. Syst 16(6), 2665–2675 (2018)

    Google Scholar 

  12. Song, Q., Song, Y.: PI-like fault-tolerant control of nonaffine systems with actuator failures. Acta. Autom. Sinica. 38(6), 1033–1040 (2012)

    Article  MathSciNet  Google Scholar 

  13. Chen, M., Ge, S.S., How, B.V.E.: Robust adaptive neural network control for a class of uncertain MIMO nonlinear systems with input nonlinearities. IEEE Trans. Neural Netw. 21(5), 796–812 (2010)

    Article  Google Scholar 

  14. Yu, Z., Yan, H., Li, S., et al.: Adaptive quantised control of switched stochastic strict-feedback non-linear systems with asymmetric input saturation. IET Control. Theory Appl. 12(10), 1367–1375 (2018)

    Article  MathSciNet  Google Scholar 

  15. Panagi, P., Polycarpou, M.M.: Decentralized fault tolerant control of a class of interconnected nonlinear systems. IEEE Trans. Autom. Control. 56(1), 178–184 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Song, Q., Sun, T.: Neuroadaptive PID-like fault-tolerant control of high speed trains with uncertain model and unknown tracking/braking actuation characteristics. In: International Symposium on Neural Networks, pp. 318-325. Springer, Cham (2017)

  17. Tan, L., Jin, G., Liu, C., et al.: Extended disturbance observer for nonlinear systems based on sliding-mode theory. In: IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), pp. 828–832 (2017)

  18. Gorenflo, R., Mainardi, F.: Fractional calculus. In: Fractals and fractional calculus in continuum mechanics, pp. 223-276. Springer, Vienna (1997)

  19. Chen, L., Wu, R., Chu, Z., et al.: Stabilization of fractional-order coupled systems with time delay on networks. Nonlinear Dyn. 88(1), 521–528 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen, L., Wu, R., Chu, Z., et al.: Pinning synchronization of fractional-order delayed complex networks with non-delayed and delayed couplings. Int. J. Control. 90(6), 1245–1255 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, L., Chen, G., Wu, R., et al.: Stabilization of uncertain multi-order fractional systems based on the extended state observer. Asian J. Control. 20(3), 1263–1273 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, C., Chen, A., Ye, J.: Numerical approaches to fractional calculus and fractional ordinary differential equation. J. Comput. Phys. 230(9), 3352–3368 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhu, C.X., Zou, Y.: Summary of research on fractional-order control. Control. Decis. 24(2), 161–169 (2009)

    MathSciNet  MATH  Google Scholar 

  24. Zhang, B.T., Pi, Y.G., Luo, Y.: Fractional order sliding-mode control based on parameters auto-tuning for velocity control of permanent magnet synchronous motor. ISA Trans. 51(5), 649–656 (2012)

    Article  Google Scholar 

  25. Izaguirre-Espinosa, C., Muñoz-Vázquez, A.J., Sánchez-Orta, A., et al.: Fractional-order Control for Robust Position/Yaw Tracking of Quadrotors with Experiments. IEEE Trans. Control. Syst. Technol. 27(4), 1645–1650 (2018)

    Article  Google Scholar 

  26. Kang, J., Zhu, Z.H., Wang, W., et al.: Fractional order sliding mode control for tethered satellite deployment with disturbances. Adv. Space Res. 59(1), 263–273 (2017)

    Article  Google Scholar 

  27. Ullah, N., Ali, M.A., Ahmad, R., et al.: Fractional order control of static series synchronous compensator with parametric uncertainty. IET Gener. Transm. Distrib 11(1), 289–302 (2017)

    Article  Google Scholar 

  28. Jafari, A.A., Mohammadi, S.M.A., Farsangi, M.M., et al.: Observer-based fractional-order adaptive type-2 fuzzy backstepping control of uncertain nonlinear MIMO systems with unknown dead-zone. Nonlinear Dyn. 95(4), 3249–3274 (2019)

    Article  Google Scholar 

  29. Viola, J., Angel, L.: Statistical robustness analysis of fractional and integer order PID controllers for the control of a nonlinear system. https://arxiv.org/abs/1810.12775 (2018)

  30. Song, Q., Song, Y.D.: Generalized PI control design for a class of unknown nonaffine systems with sensor and actuator faults. Syst. Control Lett 64, 86C95 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, W., Wen, C.: Adaptive actuator failure compensation control of uncertain nonlinear systems with guaranteed transient performance. Automatica 46(12), 2082–2091 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Song, Y., Wang, Y., Wen, C.: Adaptive fault-tolerant PI tracking control with guaranteed transient and steady-state performance. IEEE Trans. Autom. control. 62(1), 481–487 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kabore, R., Wang, H.: Design of fault diagnosis filters and fault-tolerant control for a class of nonlinear systems. IEEE Trans. Autom. Control. 46(11), 1805–1810 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Li, C., Zeng, F.: Numerical Methods for Fractional Calculus. Chapman and Hall/CRC, Boca Raton (2015)

    Book  MATH  Google Scholar 

  35. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  36. Kilbas, A.A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. Elsevier Science Limited, Amsterdam (2006)

    MATH  Google Scholar 

  37. Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

  38. Matignon, D.: Stability results for fractional differential equations with applications to control processing. Comput. Eng. Syst. Appl. 2, 963–968 (1996)

    Google Scholar 

  39. Wen, C., Zhou, J., Liu, Z., et al.: Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance. IEEE Trans. Autom. Control. 56(7), 1672–1678 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Xin, J., Zhao, G., Li, T., et al.: Research of control inverted pendulum system. Electron. Sci. Technol. 12, 45 (2016)

    Google Scholar 

Download references

Funding

This work is supported by National Natural Science Foundation of China under Grant 61503021, the National Key R&D Program of China (2016YFB1200602-26), the Talent Fund (No.2015RC048) and the State Key Laboratory Program (No.RCS2015ZT003 and RCS2017ZT007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Song.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Song, Q., Ge, M. et al. Fractional-order adaptive fault-tolerant control for a class of general nonlinear systems. Nonlinear Dyn 101, 379–392 (2020). https://doi.org/10.1007/s11071-020-05768-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05768-3

Keywords

Navigation