Skip to main content
Log in

An advanced perception model combining brain noise and adaptation

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We develop an advanced model of bistable perception based on the interplay of noise and adaptation. The model describes the decision-making process in the brain consisting in involuntary switches between perceptual states. We study the effects of noise and the stimulus duty cycle on the dominance of a particular externally biased perceptual state. We discuss the biological relevance of our model and compare the obtained numerical results with neurophysiological experiments on brain dynamics. The model qualitatively describes the results of neurophysiological experiments on human perception using bistable images, such as gamma distribution of average dominance times and the effect of brain noise on sustained attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Blake, R., Logothetis, N.K.: Visual competition. Nat. Rev. Neurosci. 3, 13–21 (2002)

    Article  Google Scholar 

  2. Boccaletti, S., Pisarchik, A.N., del Genio, C.I., Amann, A.: From Coupled Systems to Complex Networks. Cambridge University Press, Cambridge (2018)

    MATH  Google Scholar 

  3. Brascamp, J.W., van Ee, R., Noest, A.J., Jacobs, R.H.A.H., van den Berg, A.V.: The time course of binocular rivalry reveals a fundamental role of noise. J. Vis. 6(11), 8 (2006). https://doi.org/10.1167/6.11.8

    Article  Google Scholar 

  4. Braun, J., Mattia, M.: Attractors and noise: twin drivers of decisions and multistability. NeuroImage 52(3), 740–751 (2010). https://doi.org/10.1016/j.neuroimage.2009.12.126

    Article  Google Scholar 

  5. Burns, B.D.: The Uncertain Nervous System. Edward Arnold, London (1968)

    Google Scholar 

  6. Carter, O.L., Pettigrew, J.D.: A common oscillator for perceptual rivalries? Perception 32(3), 295–305 (2003). https://doi.org/10.1068/p3472

    Article  Google Scholar 

  7. Chholak, P., Maksimenko, V.A., Hramov, A.E., Pisarchik, A.N.: Estimating voluntary and involuntary attention in bistable visual perception: A MEG study. bioRxiv p. 2020.02.18.953653 (2020). doi: https://doi.org/10.1101/2020.02.18.953653

  8. Deco, G., Rolls, E.T., Romo, R.: Stochastic dynamics as a principle of brain function. Progr. Neurobiol. 88(1), 1–16 (2009)

    Article  Google Scholar 

  9. d’Onofrio, A. (ed.): Bounded Noises in Physics, Biology, and Engineering. Springer, New York (2013)

    MATH  Google Scholar 

  10. Dotov, D.G., Turvey, M.T., Frank, T.D.: Embodied gestalts: Unstable visual phenomena become stable when they are stimuli for competitive action selection. Atten. Percept. Psychophys. (2019). https://doi.org/10.3758/s13414-019-01868-4

    Article  Google Scholar 

  11. Ermentrout, B., Terman, D.H.: Mathematical Foundations of Neuroscience. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  12. García-Vellisca, M.A., Pisarchik, A.N., Jaimes-Reátegui, R.: Experimental evidence of deterministic coherence resonance in coupled chaotic systems with frequency mismatch. Phys. Rev. E 94, 012218 (2016)

    Article  Google Scholar 

  13. Gayet, S., Paffen, C.L.E., Van der Stigchel, S.: Information matching the content of visual working memory is prioritized for conscious access. Psychol. Sci. 24(12), 2472–80 (2013). https://doi.org/10.1177/0956797613495882

    Article  Google Scholar 

  14. Gilden, D.L., Thornton, T., Mallon, M.W.: 1/f noise in human cognition. Science 267, 1837–1839 (1995)

    Article  Google Scholar 

  15. Haken, H.: Principles of Brain Functioning. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  16. Hausdorff, J.M., Peng, C.K.: Multiscaled randomness: a possible source of 1/f noise in biology. Phys. Rev. E 54(2), 2154–2157 (1996)

    Article  Google Scholar 

  17. Hebb, D.O.: The Organization of Behaviour. Wiley, New York (1949)

    Google Scholar 

  18. Herculano-Houzel, S.: The human brain in numbers: a linearly scaled-up primate brain. Front. Hum. Neurosci. 3(Nov), 31 (2009). https://doi.org/10.3389/neuro.09.031.2009

    Article  Google Scholar 

  19. Hock, H.S., Schöner, G., Giese, M.: The dynamical foundations of motion pattern formation: stability, selective adaptation, and perceptual continuity. Percept. Psychophys. 65(3), 429–457 (2003). https://doi.org/10.3758/BF03194574

    Article  Google Scholar 

  20. Hramov, A.E., Maksimenko, V.A., Koronovskii, A.A., Runnova, A.E., Zhuravlev, M.O., Pisarchik, A.N., Kurths, J.: Percept-related EEG classification using machine learning approach and features of functional brain connectivity. Chaos 29, 093110 (2019)

    Article  Google Scholar 

  21. Huguet, G., Rinzel, J., Hupe, J.M.: Noise and adaptation in multistable perception: noise drives when to switch, adaptation determines percept choice. J. Vis. 14(3), 19 (2014). https://doi.org/10.1167/14.3.19

    Article  Google Scholar 

  22. Jacobson, G.A., Diba, K., Yaron-Jakoubovitch, A., Oz, Y., Koch, C., Segev, I., Yarom, Y.: Subthreshold voltage noise of rat neocortical pyramidal neurons. J. Physiol. 564(1), 145–160 (2005)

    Article  Google Scholar 

  23. Kelso, J.A.S.: Multistability and metastability: understanding dynamic coordination in the brain. Philos. Trans. R. Soc. B 32–33(1591), 906–918 (2012). https://doi.org/10.1098/rstb.2011.0351

    Article  Google Scholar 

  24. Kohler, W., Wallach, H.: Figural after-effects, an investigation of visual processes. Proc. Am. Philos. Soc. 88, 269–357 (1944)

    Google Scholar 

  25. Kornmeier, J., Ehn, W., Bigalke, H., Bach, M.: Discontinuous presentation of ambiguous figures: how interstimulus interval durations affect reversal dynamics and ERPs. Psychophysiology 44(4), 552–560 (2007)

    Article  Google Scholar 

  26. Lafer-Sousa, R., Hermann, K.L., Conway, B.R.: Striking individual differences in color perception uncovered by ‘the dress’ photograph. Curr. Biol. 25(13), R545–R546 (2015). https://doi.org/10.1016/J.CUB.2015.04.053

    Article  Google Scholar 

  27. Lago-Fernández, L.F., Deco, G.: A model of binocular rivalry based on competition in IT. Neurocomputing 44–46, 503–507 (2002). https://doi.org/10.1016/S0925-2312(02)00408-3

    Article  MATH  Google Scholar 

  28. Laing, C.R., Chow, C.C.: A spiking neuron model based for binocular rivalry. J. Comput. Neurosci. 12, 39–53 (2002)

    Article  Google Scholar 

  29. Lehky, S.R.: An astable multivibrator model of binocular rivalry. Perception 17(1988), 215–228 (1995)

    Google Scholar 

  30. Leopold, D.A., Logothetis, N.K.: Multistable phenomena: changing views in perception. Trends Cognit. Sci. 3(Regular), 254–264 (1999)

    Article  Google Scholar 

  31. Leopold, D.A., Wilke, M., Maier, A., Logothetis, N.K.: Stable perception of visually ambiguous patterns. Nat. Neurosci. 5(6), 605–609 (2002). https://doi.org/10.1038/nn0602-851

    Article  Google Scholar 

  32. Levelt, W.J.M.: On Binocular Rivalry. Mouton, Paris (1968)

    Google Scholar 

  33. Long, G.M., Toppino, T.C.: Enduring interest in perceptual ambiguity: Alternating views of reversible figures. Psychol. Bull. 130, 748–768 (2004)

    Article  Google Scholar 

  34. Maksimenko, V.A., Frolov, N.S., Hramov, A.E., Runnova, A.E., Grubov, V.V., Kurths, J., Pisarchik, A.N.: Neural interactions in a spatially-distributed cortical network during attentional tasks. Front. Behav. Neurosci. 13, 20 (2019)

    Article  Google Scholar 

  35. Maksimenko, V.A., Hramov, A.E., Grubov, V.V., Nedaivozov, V.O., Makarov, V.V., Pisarchik, A.N.: Nonlinear effect of biological feedback on brain attentional state. Nonlinear Dyn. 95, 1923–1939 (2019)

    Article  Google Scholar 

  36. Maruya, K., Yang, E., Blake, R.: Voluntary action influences visual competition. Psychol. Sci. 18(12), 1090–1098 (2007). https://doi.org/10.1111/j.1467-9280.2007.02030.x

    Article  Google Scholar 

  37. Meilikhov, E.Z., Farzetdinova, R.M.: Bistable perception of ambiguous images: simple Arrhenius model. Cognit. Neurodyn. (2019). https://doi.org/10.1007/s11571-019-09554-9

  38. Merk, I., Schnakenberg, J.: A stochastic model of multistable visual perception. Biol. Cyber. 86, 111–116 (2002)

    Article  MATH  Google Scholar 

  39. Moreno-Bote, R., Rinzel, J., Rubin, N.: Noise-induced alternations in an attractor network model of perceptual bistability. J. Neurophysiol. 98(3), 1125–39 (2007). https://doi.org/10.1152/jn.00116.2007

    Article  Google Scholar 

  40. Pikovsky, A.S., Kurths, J.: Neural interactions in a spatially-distributed cortical network during attentional tasks. Phys. Rev. Lett. 13, 78 (2019)

    Google Scholar 

  41. Pisarchik, A.N., Chholak, P., Hramov, A.E.: Brain noise estimation from MEG response to flickering visual stimulation. Chaos Soliton. Fract. X 1, 100005 (2019). https://doi.org/10.1016/J.CSFX.2019.100005

    Article  Google Scholar 

  42. Pisarchik, A.N., Jaimes-Reátegui, R.: Deterministic coherence resonance in coupled chaotic oscillators with frequency mismatch. Phys. Rev. E 92, 050901(R) (2015)

    Article  Google Scholar 

  43. Pisarchik, A.N., Jaimes-Reátegui, R., Magallón-García, C.D.A., Castillo-Morales, C.O.: Critical slowing down and noise-induced intermittency in bistable perception: bifurcation analysis. Biol. Cybernet. 108(4), 397–404 (2014). https://doi.org/10.1007/s00422-014-0607-5

    Article  Google Scholar 

  44. Quian Quiroga, R., Reddy, L., Kreiman, G., Koch, C., Fried, I.: Invariant visual representation by single neurons in the human brain. Nature 435, 1102–1107 (2005). https://doi.org/10.1038/nature03687DO

    Article  Google Scholar 

  45. Runnova, A.E., Hramov, A.E., Grubov, V.V., Koronovskii, A.A., Kurovskaya, M.K., Pisarchik, A.N.: Theoretical background and experimental measurements of human brain noise intensity in perception of ambiguous images. Chaos Soliton Fract. 93, 201–206 (2016). https://doi.org/10.1016/J.CHAOS.2016.11.001

    Article  MathSciNet  MATH  Google Scholar 

  46. Scocchia, L., Valsecchi, M., Gegenfurtner, K.R., Triesch, J.: Differential effects of visual attention and working memory on binocular rivalry. J. Vis. (2014). https://doi.org/10.1167/14.5.13

  47. Shpiro, A., Moreno-Bote, R., Rubin, N., Rinzel, J.: Balance between noise and adaptation in competition models of perceptual bistability. J. Comput. Neurosci. 27(1), 37–54 (2009). https://doi.org/10.1007/s10827-008-0125-3

    Article  MathSciNet  Google Scholar 

  48. Sterzer, P., Kleinschmidt, A., Rees, G.: The neural bases of multistable perception. Trends Cognit. Sci. 13(7), 310–318 (2009). https://doi.org/10.1016/J.TICS.2009.04.006

    Article  Google Scholar 

  49. Urakawa, T., Bunya, M., Araki, O.: Involvement of the visual change detection process in facilitating perceptual alternation in the bistable image. Cognit. Neurodyn. 11(4), 307–318 (2019)

    Article  Google Scholar 

  50. Valdez, A.B., Papesh, M.H., Treiman, D.M., Smith, K.A., Goldinger, S.D., Steinmetz, P.N.: Distributed representation of visual objects by single neurons in the human brain. J. Neurosci. 35(13), 5180–5186 (2015). https://doi.org/10.1523/JNEUROSCI.1958-14.2015

    Article  Google Scholar 

  51. Wertheimer, M.: Experimentelle Studien über das Sehen von Bewegung. Zeitschriftfür Psychologie 61, 161–265 (1912)

    Google Scholar 

  52. Wilson, H.R., Blake, R., Lee, S.H.: Dynamics of travelling waves in visual perception. Nature 412(6850), 907–910 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

A.N.P. thanks the Spanish Ministry of Economy and Competitiveness for supporting the idea of this research under project SAF2016-80240. The data analysis was supported by the Russian Science Foundation (Grant No. 19-12-00050). The authors thank Dr. Gregor Schöner for fruitful discussions on setting up the initial model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parth Chholak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chholak, P., Hramov, A.E. & Pisarchik, A.N. An advanced perception model combining brain noise and adaptation. Nonlinear Dyn 100, 3695–3709 (2020). https://doi.org/10.1007/s11071-020-05741-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05741-0

Keywords

Navigation