Skip to main content
Log in

Complexity behaviours of agent-based financial dynamics by hetero-distance contact process

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

To model the nonlinear and complex dynamics of financial systems, a new model for the formation of financial prices is developed, taking into account heterogeneity in the communication range of market agents. Specifically, one type of agents can potentially gather and disseminate information via additional long-distance contacts compared to the other type, and interactions among these agents are imitated by the contact process. The financial price series of the model are simulated, analysed, and compared with multiple major stock indices in nonlinear fluctuation behaviours. To better investigate the complexity structure of the financial time series, a generalization of the multiscale entropy method is developed to consider various moments in coarse graining. Overall, the modelled series are found to follow a fat-tail distribution and a pattern of complexity structure over both moments and time scales similar to real market data. This similarity is also shown by applying alternative complexity measure, matching energy method. Moreover, the wealth inequality among agents is found to increase over time within each type as well as across two types, further revealing nonlinear price and welfare dynamics of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Azami, H., Fernández, A., Escudero, J.: Refined multiscale fuzzy entropy based on standard deviation for biomedical signal analysis. Med. Biol. Eng. Comput. 55(11), 2037–2052 (2017)

    Google Scholar 

  2. Azami, H., Li, P., Arnold, S.E., Escudero, J., Humeau-Heurtier, A.: Fuzzy entropy metrics for the analysis of biomedical signals: assessment and comparison. IEEE Access 7, 104833–104847 (2019)

    Google Scholar 

  3. Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88(17), 174102 (2002)

    Google Scholar 

  4. Bouchaud, J.-P., Potters, M.: Theory of Financial Risk and Derivative Pricing: From Statistical Physics to Risk Management, 2nd edn. Cambridge University Press, Cambridge and New York (2003)

    MATH  Google Scholar 

  5. Calvet, L., Fisher, A.: Forecasting multifractal volatility. J. Econom. 105(1), 27–58 (2001)

    MathSciNet  MATH  Google Scholar 

  6. Chakraborti, A., Toke, I.M., Patriarca, M., Abergel, F.: Econophysics review: I. empirical facts. Quant. Finance 11(7), 991–1012 (2011)

    MathSciNet  Google Scholar 

  7. Chatterjee, A., Ghosh, A., Inoue, J., Chakrabarti, B.K.: Social inequality: from data to statistical physics modeling. In: Statphys-Kolkata VIII, volume 638 of Journal of Physics Conference Series, 2015. 8th International Conference on Statistical Physics (Statphys), Kolkata, India, Dec 01–05 (2014)

  8. Chen, W., Wang, Z., Xie, H., Wangxin, Y.: Characterization of surface EMG signal based on fuzzy entropy. IEEE Trans. Neural Syst. Rehabilit. Eng. Publ. IEEE Eng. Med. Biol. Soc. 15(2), 266–272 (2007)

    Google Scholar 

  9. Chen, W., Zhuang, J., Wangxin, Y., Wang, Z.: Measuring complexity using FuzzyEn, ApEn, and SampEn. Med. Eng. Phys. 31(1), 61–68 (2009)

    Google Scholar 

  10. Chiang, H.-S., Chen, M.-Y., Huang, Y.-J.: Wavelet-based EEG processing for epilepsy detection using fuzzy entropy and associative petri net. IEEE Access 7, 103255–103262 (2019)

    Google Scholar 

  11. Costa, M., Goldberger, A.L., Peng, C.: Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 89(6), 068102 (2002)

    Google Scholar 

  12. Costa, M., Goldberger, A.L., Peng, C.: Multiscale entropy analysis of biological signals. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 71(2 Pt 1), 021906 (2005)

    MathSciNet  Google Scholar 

  13. Costa, M.D., Goldberger, A.L.: Generalized multiscale entropy analysis: application to quantifying the complex volatility of human heartbeat time series. Entropy 17(3), 1197–1203 (2015)

    Google Scholar 

  14. Costa, M.D., Peng, C.-K., Goldberger, A.L.: Multiscale analysis of heart rate dynamics: entropy and time irreversibility measures. Cardiovasc. Eng. 8(2), 88–93 (2008)

    Google Scholar 

  15. Fang, W., Wang, J.: Effect of boundary conditions on stochastic ising-like financial market price model. Bound. Value Probl. 2012(1), 549 (2012)

    MathSciNet  Google Scholar 

  16. Fang, W., Wang, J.: Statistical properties and multifractal behaviors of market returns by ising dynamic systems. Int. J. Mod. Phys. C 23(03), 1250023 (2012)

    MATH  Google Scholar 

  17. Fouda, J.S.A.E.: The matching energy: a novel approach for measuring complexity in time series. Nonlinear Dyn. 86(3), 2049–2060 (2016)

    Google Scholar 

  18. Gabaix, X., Gopikrishnan, P., Plerou, V., Eugene Stanley, H.: A theory of power-law distributions in financial market fluctuations. Nature 423(6937), 267–270 (2003)

    MATH  Google Scholar 

  19. Garofalo, F., Iudice, F.L., Napoletano, E.: Herding as a consensus problem. Nonlinear Dyn. 92(1), 25–32 (2018)

    Google Scholar 

  20. Hong, H., Kubik, J.D., Stein, J.C.: Social interaction and stock-market participation. J. Finance 59(1), 137–163 (2004)

    Google Scholar 

  21. Hong, W., Wang, J.: Multiscale behavior of financial time series model from Potts dynamic system. Nonlinear Dyn. 78(2), 1065–1077 (2014)

    MathSciNet  Google Scholar 

  22. Ilinski, K.: Physics of Finance: Gauge Modelling in Non-Equilibrium Pricing. Wiley Finance Series. Wiley, Chichester (2001)

    Google Scholar 

  23. Ivković, Z., Weisbenner, S.: Information diffusion effects in individual investors’ common stock purchases: covet thy neighbors’ investment choices. Rev. Financ. Stud. 20(4), 1327–1357 (2007)

    Google Scholar 

  24. Krawiecki, A.: Microscopic spin model for the stock market with attractor bubbling and heterogeneous agents. Int. J. Mod. Phys. C 16(04), 549–559 (2005)

    MATH  Google Scholar 

  25. Li, P., Liu, C., Li, K., Zheng, D., Liu, C., Hou, Y.: Assessing the complexity of short-term heartbeat interval series by distribution entropy. Med. Biol. Eng. Comput. 53(1), 77–87 (2015)

    Google Scholar 

  26. Li, Y., Pan, W., Li, K., Jiang, Q., Liu, G.: Sliding trend fuzzy approximate entropy as a novel descriptor of heart rate variability in obstructive sleep apnea. IEEE J. Biomed. Health Inform. 23(1), 175–183 (2019)

    Google Scholar 

  27. Liggett, T.M.: Interacting Particle Systems. Springer, New York (1985)

    MATH  Google Scholar 

  28. Liggett, T.M.: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, Berlin and London (1999)

    MATH  Google Scholar 

  29. Lu, Y., Wang, J.: Nonlinear dynamical complexity of agent-based stochastic financial interacting epidemic system. Nonlinear Dyn. 86(3), 1823–1840 (2016)

    MathSciNet  Google Scholar 

  30. Niu, H., Wang, J.: Volatility clustering and long memory of financial time series and financial price model. Digit. Signal Process. 23(2), 489–498 (2013)

    MathSciNet  Google Scholar 

  31. Niu, H., Wang, J.: Multifractal and recurrence behaviors of continuum percolation-based financial price dynamics. Nonlinear Dyn. 83(1–2), 513–528 (2016)

    MathSciNet  Google Scholar 

  32. Ormos, M., Zibriczky, D.: Entropy-based financial asset pricing. PloS One 9(12), e115742 (2014)

    Google Scholar 

  33. Ozsoylev, H.N., Walden, J., Deniz Yavuz, M., Bildik, R.: Investor networks in the stock market. Rev. Financ. Stud. 27(5), 1323–1366 (2014)

    Google Scholar 

  34. Pincus, S.M.: Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. U.S.A. 88(6), 2297–2301 (1991)

    MathSciNet  MATH  Google Scholar 

  35. Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L.A.N., Eugene Stanley, H.: Econophysics: financial time series from a statistical physics point of view. Phys. A Stat. Mech. Appl. 279(1–4), 443–456 (2000)

    Google Scholar 

  36. Polanco-Martínez, J.M.: Dynamic relationship analysis between NAFTA stock markets using nonlinear, nonparametric, non-stationary methods. Nonlinear Dyn. 97(1), 369–389 (2019)

    MATH  Google Scholar 

  37. Richman, J.S., Randall Moorman, J.: Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278, H2039–H2049 (2000)

    Google Scholar 

  38. Rossi, A.G., Blake, D., Timmermann, A., Tonks, I., Wermers, R.: Network centrality and delegated investment performance. J. Financ. Econ. 128(1), 183–206 (2018)

    Google Scholar 

  39. Rostaghi, M., Azami, H.: Dispersion entropy: a measure for time-series analysis. IEEE Signal Process. Lett. 23(5), 610–614 (2016)

    Google Scholar 

  40. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(4), 623–656 (1948)

    MathSciNet  MATH  Google Scholar 

  41. Shiller, R.J., Pound, J.: Survey evidence on diffusion of interest and information among investors. J. Econ. Behav. Org. 12(1), 47–66 (1989)

    Google Scholar 

  42. Stauffer, D., Penna, T.J.P.: Crossover in the Cont–Bouchaud percolation model for market fluctuations. Phys. A Stat. Mech. Appl. 256(1–2), 284–290 (1998)

    Google Scholar 

  43. Szuminski, W.: Integrability analysis of chaotic and hyperchaotic finance systems. Nonlinear Dyn. 94(1), 443–459 (2018)

    MATH  Google Scholar 

  44. Tacha, O.I., Munoz-Pacheco, J.M., Zambrano-Serrano, E., Stouboulos, I.N., Pham, V.T.: Determining the chaotic behavior in a fractional-order finance system with negative parameters. Nonlinear Dyn. 94(2), 1303–1317 (2018)

    Google Scholar 

  45. Tenreiro Machado, J.A., Duarte, F.B., Duarte, G.M.: Analysis of financial data series using fractional fourier transform and multidimensional scaling. Nonlinear Dyn. 65(3), 235–245 (2011)

    Google Scholar 

  46. Tenreiro Machado, J.A.: Complex dynamics of financial indices. Nonlinear Dyn. 74(1–2), 287–296 (2013)

    Google Scholar 

  47. Tenreiro Machado, J.A.: Relativistic time effects in financial dynamics. Nonlinear Dyn. 75(4), 735–744 (2014)

    MathSciNet  Google Scholar 

  48. Tenreiro Machado, J.A., Lopes, A.M.: Relative fractional dynamics of stock markets. Nonlinear Dyn. 86(3), 1613–1619 (2016)

    MathSciNet  Google Scholar 

  49. Wang, J., Wang, J.: Measuring the correlation complexity between return series by multiscale complex analysis on Potts dynamics. Nonlinear Dyn. 89(4), 2703–2721 (2017)

    MathSciNet  Google Scholar 

  50. Wang, J., Wang, Q., Shao, J.: Fluctuations of stock price model by statistical physics systems. Math. Comput. Model. 51(5–6), 431–440 (2010)

    MathSciNet  MATH  Google Scholar 

  51. Wu, Z., Zhang, W.: Fractional refined composite multiscale fuzzy entropy of international stock indices. Entropy 21(9), 914 (2019)

    MathSciNet  Google Scholar 

  52. Xiao, D., Wang, J.: Modeling stock price dynamics by continuum percolation system and relevant complex systems analysis. Phys. A Stat. Mech. Appl. 391(20), 4827–4838 (2012)

    Google Scholar 

  53. Xiao, D., Wang, J.: Graph based and multifractal analysis of financial time series model by continuum percolation. Int. J. Nonlinear Sci. Numer. Simul. 15(5), 265–277 (2014)

    MathSciNet  MATH  Google Scholar 

  54. Xiao, D., Wang, J., Niu, H.: Volatility analysis of financial agent-based market dynamics from stochastic contact system. Comput. Econ. 48(4), 607–625 (2016)

    Google Scholar 

  55. Yang, G., Wang, J., Deng, W.: Nonlinear analysis of volatility duration financial series model by stochastic interacting dynamic system. Nonlinear Dyn. 80(1–2), 701–713 (2015)

    MathSciNet  Google Scholar 

  56. Yao, Y., Wang, J.: Lattice-oriented percolation system applied to volatility behavior of stock market. J. Appl. Stat. 39(4), 785–797 (2012)

    MathSciNet  Google Scholar 

  57. Zhang, J., Wang, J., Shao, J.: Finite-range contact process on the market return intervals distributions. Adv. Complex Syst. 13(5), 643–657 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by Humanities and Social Sciences Foundation of Ministry of Education of China No. 20YJCZH184.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Di Xiao or Jun Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, D., Wang, J. Complexity behaviours of agent-based financial dynamics by hetero-distance contact process. Nonlinear Dyn 100, 3867–3886 (2020). https://doi.org/10.1007/s11071-020-05734-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05734-z

Keywords

Navigation