Skip to main content

Advertisement

Log in

Comprehensive theoretical and experimental investigation of the rotational impact energy harvester with the centrifugal softening effect

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Rotation-based energy harvesting has attracted considerable interest in recent years. This paper presents a comprehensive theoretical model to analyze a rotational impact energy harvester using the centrifugal softening effect. The harvester is composed of a centrifugal-softening driving beam that impacts two rigid piezoelectric beams to generate electrical energy through the gravity excitation. The theoretical model is derived based on Hamilton’s principle and Hertzian contact theory. An impact force model is used to overcome the limitation of the previous piecewise linear model, which cannot reflect the influence of the deformations of the driving and generating beams on the impact force and the energy output. Furthermore, an analytical impact force model is originally proposed for such a harvester based on Lee’s method to understand the impact mechanism. The proposed analytical model is validated through comparison with Runge–Kutta method. Both numerical and experimental results show that the centrifugal softening effect can amplify the relative motion between the driving and generating beams and increase the impact force, thus improving output power at low rotational frequencies. The maximum output power is increased by 135.5% at 11.5 Hz for the impact gap of 0.75 mm. In addition, with the large impact stiffness, the impact force can successfully prevent the inverted driving beam from continuously deflecting and suffering the static divergence. Based on the validated theoretical model, parametric studies are conducted to further investigate the effects of the impact stiffness and the centrifugal softening coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Zhao, L., Zou, H., Yan, G., Liu, F., Tan, T., Zhang, W., Peng, Z., Meng, G.: A water-proof magnetically coupled piezoelectric–electromagnetic hybrid wind energy harvester. Appl. Energy 239, 735 (2019)

    Google Scholar 

  2. Zou, H., Zhao, L., Gao, Q., Zuo, L., Liu, F., Tan, T., Wei, K., Zhang, W.: Mechanical modulations for enhancing energy harvesting: principles, methods and applications. Appl. Energy 255, 113871 (2019)

    Google Scholar 

  3. Wang, J., Gu, S., Zhang, C., Hu, G., Chen, G., Yang, K., Li, H., Lai, Y., Litak, G., Yurchenko, D.: Hybrid wind energy scavenging by coupling vortex-induced vibrations and galloping. Energy Convers. Manag. 213, 112835 (2020)

    Google Scholar 

  4. Wang, J., Geng, L., Yang, K., Wang, F., Zhao, L.Z., Yurchenko, D.: Dynamics of the double-beam piezo–magneto–elastic nonlinear wind energy harvester exhibiting galloping-based vibration. Nonlinear Dyn. (2020). https://doi.org/10.1007/s11071-020-05633-3

    Article  Google Scholar 

  5. Du, Y., Zhou, S., Jing, X., Peng, Y., Wu, H., Kwok, N.: Damage detection techniques for wind turbine blades: a review. Mech. Syst. Signal Process. 141, 106445 (2019)

    Google Scholar 

  6. Fang, S., Fu, X., Liao, W.H.: Asymmetric plucking bistable energy harvester: modeling and experimental validation. J. Sound Vib. 459, 114852 (2019)

    Google Scholar 

  7. Fang, S., Fu, X., Liao, W.H.: Modeling and experimental validation on the interference of mechanical plucking energy harvesting. Mech. Syst. Signal Process. 134, 106317 (2019)

    Google Scholar 

  8. Rui, X., Zeng, Z., Zhang, Y., Li, Y., Feng, H., Huang, X., Sha, Z.: Design and experimental investigation of a self-tuning piezoelectric energy harvesting system for intelligent vehicle wheels. IEEE Trans. Veh. Technol. (2019). https://doi.org/10.1109/TVT.2019.2959616

    Article  Google Scholar 

  9. Mei, X., Zhou, S., Yang, Z., Kaizuka, T., Nakano, K.: The benefits of an asymmetric tri-stable energy harvester in low-frequency rotational motion. Appl. Phys. Express 12(5), 057002 (2019)

    Google Scholar 

  10. Zhang, Y., Jin, Y.: Stochastic dynamics of a piezoelectric energy harvester with correlated colored noises from rotational environment. Nonlinear Dyn. 98(1), 501 (2019)

    Google Scholar 

  11. Fu, X., Liao, W.H.: Modeling and analysis of piezoelectric energy harvesting with dynamic plucking mechanism. J. Vib. Acoust. 141(3), 031002 (2019)

    Google Scholar 

  12. Fu, H., Yeatman, E.M.: Rotational energy harvesting using bi-stability and frequency up-conversion for low-power sensing applications: theoretical modelling and experimental validation. Mech. Syst. Signal Process. 125, 229 (2019)

    Google Scholar 

  13. Cai, M., Wang, J., Liao, W.H.: Self-powered smart watch and wristband enabled by embedded generator. Appl. Energy 263, 114682 (2020)

    Google Scholar 

  14. Xie, Z., Wang, T., Kwuimy, C.K., Shao, Y., Huang, W.: Design, analysis and experimental study of a \(T\)-shaped piezoelectric energy harvester with internal resonance. Smart Mater. Struct. 28(8), 085027 (2019)

    Google Scholar 

  15. Erturk, A., Inman, D.J.: Piezoelectric Energy Harvesting. Wiley, Berlin (2011)

    Google Scholar 

  16. Bibo, A., Abdelkefi, A., Daqaq, M.F.: Modeling and characterization of a piezoelectric energy harvester under combined aerodynamic and base excitations. J. Vib. Acoust. 137(3), 031017 (2015)

    Google Scholar 

  17. Xiong, L., Tang, L., Mace, B.R.: A comprehensive study of 2:1 internal-resonance-based piezoelectric vibration energy harvesting. Nonlinear Dyn. 91(3), 1817 (2018)

    Google Scholar 

  18. Zhao, B., Wang, J., Liang, J., Liao, W.H.: A dual-effect solution for broadband piezoelectric energy harvesting. Appl. Phys. Lett. 116(6), 063901 (2020)

    Google Scholar 

  19. Zhou, S., Cao, J., Erturk, A., Lin, J.: Enhanced broadband piezoelectric energy harvesting using rotatable magnets. Appl. Phys. Lett. 102(17), 173901 (2013)

    Google Scholar 

  20. Dai, H., Abdelkefi, A., Wang, L.: Piezoelectric energy harvesting from concurrent vortex-induced vibrations and base excitations. Nonlinear Dyn. 77(3), 967 (2014)

    Google Scholar 

  21. Wang, J., Tang, L., Zhao, L., Hu, G., Song, R., Xu, K.: Equivalent circuit representation of a vortex-induced vibration-based energy harvester using a semi-empirical lumped parameter approach. Int. J. Energy Res. 44, 4516–4528 (2020)

    Google Scholar 

  22. Tang, L., Yang, Y.: A nonlinear piezoelectric energy harvester with magnetic oscillator. Appl. Phys. Lett. 101(9), 094102 (2012)

    Google Scholar 

  23. Qian, F., Xu, T.B., Zuo, L.: Piezoelectric energy harvesting from human walking using a two-stage amplification mechanism. Energy 189, 116140 (2019)

    Google Scholar 

  24. Hu, G., Wang, J., Su, Z., Li, G., Peng, H., Kwok, K.: Performance evaluation of twin piezoelectric wind energy harvesters under mutual interference. Appl. Phys. Lett. 115(7), 073901 (2019)

    Google Scholar 

  25. Zhou, Z., Qin, W., Zhu, P., Du, W., Deng, W., Pan, J.: Scavenging wind energy by a dynamic-stable flutter energy harvester with rectangular wing. Appl. Phys. Lett. 114(24), 243902 (2019)

    Google Scholar 

  26. Yang, K., Qiu, T., Wang, J., Tang, L.: Magnet-induced monostable nonlinearity for improving the VIV-galloping-coupled wind energy harvesting using combined cross-sectioned bluff body. Smart Mater. Struct. 28, 045018 (2020)

    Google Scholar 

  27. Gu, L., Livermore, C.: Passive self-tuning energy harvester for extracting energy from rotational motion. Appl. Phys. Lett. 97(8), 081904 (2010)

    Google Scholar 

  28. Gu, L., Livermore, C.: Compact passively self-tuning energy harvesting for rotating applications. Smart Mater. Struct. 21(1), 015002 (2011)

    Google Scholar 

  29. Hsu, J.C., Tseng, C.T., Chen, Y.S.: Analysis and experiment of self-frequency-tuning piezoelectric energy harvesters for rotational motion. Smart Mater. Struct. 23(7), 075013 (2014)

    Google Scholar 

  30. Mei, X., Zhou, S., Yang, Z., Kaizuka, T., Nakano, K.: A tri-stable energy harvester in rotational motion: modeling, theoretical analyses and experiments. J. Sound Vib. 469, 115142 (2019)

    Google Scholar 

  31. Khameneifar, F., Arzanpour, S., Moallem, M.: A piezoelectric energy harvester for rotary motion applications: design and experiments. IEEE/ASME Trans. Mechatron. 18(5), 1527 (2012)

    Google Scholar 

  32. Guan, M., Liao, W.H.: Design and analysis of a piezoelectric energy harvester for rotational motion system. Energy Convers. Manag. 111, 239 (2016)

    Google Scholar 

  33. Zou, H., Zhang, W., Li, W., Wei, K., Gao, Q., Peng, Z., Meng, G.: Design and experimental investigation of a magnetically coupled vibration energy harvester using two inverted piezoelectric cantilever beams for rotational motion. Energy Convers. Manag. 148, 1391 (2017)

    Google Scholar 

  34. Kim, D., Cossé, J., Cerdeira, C.H., Gharib, M.: Flapping dynamics of an inverted flag. J. Fluid Mech. 736, R1 (2013)

    MATH  Google Scholar 

  35. Orrego, S., Shoele, K., Ruas, A., Doran, K., Caggiano, B., Mittal, R., Kang, S.H.: Harvesting ambient wind energy with an inverted piezoelectric flag. Appl. Energy 194, 212 (2017)

    Google Scholar 

  36. Païdoussis, M.P., Price, S.J., De Langre, E.: Fluid–Structure Interactions: Cross-Flow-Induced Instabilities. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  37. Zhou, S., Cao, J., Inman, D.J., Liu, S., Wang, W., Lin, J.: Impact-induced high-energy orbits of nonlinear energy harvesters. Appl. Phys. Lett. 106(9), 093901 (2015)

    Google Scholar 

  38. Fu, X., Liao, W.H.: Nondimensional model and parametric studies of impact piezoelectric energy harvesting with dissipation. J. Sound Vib. 429, 78 (2018)

    Google Scholar 

  39. Yang, Z., Tang, L., Tao, K., Aw, K.: A broadband electret-based vibrational energy harvester using soft magneto-sensitive elastomer with asymmetrical frequency response profile. Smart Mater. Struct. 28(10), 10LT02 (2019)

    Google Scholar 

  40. Xie, Z., Kwuimy, C.K., Wang, T., Ding, X., Huang, W.: Theoretical analysis of an impact-bistable piezoelectric energy harvester. Eur. Phys. J. Plus 134(5), 190 (2019)

    Google Scholar 

  41. Renaud, M., Fiorini, P., van Schaijk, R., Van Hoof, C.: Harvesting energy from the motion of human limbs: the design and analysis of an impact-based piezoelectric generator. Smart Mater. Struct. 18(3), 035001 (2009)

    Google Scholar 

  42. Gu, L.: Low-frequency piezoelectric energy harvesting prototype suitable for the MEMS implementation. Microelectron. J. 42(2), 277 (2011)

    Google Scholar 

  43. Fu, Y., Ouyang, H., Davis, R.B.: Nonlinear dynamics and triboelectric energy harvesting from a three-degree-of-freedom vibro-impact oscillator. Nonlinear Dyn. 92(4), 1985 (2018)

    Google Scholar 

  44. Hu, G., Tang, L., Das, R.: An impact-engaged two-degrees-of-freedom piezoelectric energy harvester for wideband operation. Proc. Eng. 173, 1463 (2017)

    Google Scholar 

  45. Hu, G., Tang, L., Das, R., Marzocca, P.: A two-degree-of-freedom piezoelectric energy harvester with stoppers for achieving enhanced performance. Int. J. Mech. Sci. 149, 500 (2018)

    Google Scholar 

  46. Gu, L., Livermore, C.: Impact-driven, frequency up-converting coupled vibration energy harvesting device for low frequency operation. Smart Mater. Struct. 20(4), 045004 (2011)

    Google Scholar 

  47. Halim, M.A., Khym, S., Park, J.: Frequency up-converted wide bandwidth piezoelectric energy harvester using mechanical impact. J. Appl. Phys. 114(4), 044902 (2013)

    Google Scholar 

  48. Liu, H., Lee, C., Kobayashi, T., Tay, C.J., Quan, C.: Investigation of a MEMS piezoelectric energy harvester system with a frequency-widened-bandwidth mechanism introduced by mechanical stoppers. Smart Mater. Struct. 21(3), 035005 (2012)

    Google Scholar 

  49. Stronge, W.J.: Impact Mechanics. Cambridge University Press, Cambridge (2018)

    MATH  Google Scholar 

  50. Lee, Y., Hamilton, J., Sullivan, J.: The lumped parameter method for elastic impact problems. J. Appl. Mech. 50(4a), 823 (1983)

    MATH  Google Scholar 

  51. Fang, S., Fu, X., Du, X., Liao, W.H.: A music-box-like extended rotational plucking energy harvester with multiple piezoelectric cantilevers. Appl. Phys. Lett. 114(23), 233902 (2019)

    Google Scholar 

  52. Fu, H., Yeatman, E.M.: A methodology for low-speed broadband rotational energy harvesting using piezoelectric transduction and frequency up-conversion. Energy 125, 152 (2017)

    Google Scholar 

  53. Pozzi, M.: Magnetic plucking of piezoelectric bimorphs for a wearable energy harvester. Smart Mater. Struct. 25(4), 045008 (2016)

    Google Scholar 

  54. Hagood, N.W., Chung, W.H., Von Flotow, A.: Modelling of piezoelectric actuator dynamics for active structural control. J. Intell. Mater. Syst. Struct. 1(3), 327 (1990)

    Google Scholar 

  55. Yang, Z., Tang, L., Xie, M., Sun, S., Li, W., Aw, K.: Soft magneto-sensitive elastomer and polyvinylidene fluoride polymer based nonlinear piezoelectric energy harvesting: design, modelling and experiment. Smart Mater. Struct. 28(1), 015031 (2018)

    Google Scholar 

  56. Abdelkefi, A., Nayfeh, A., Hajj, M.: Global nonlinear distributed-parameter model of parametrically excited piezoelectric energy harvesters. Nonlinear Dyn. 67(2), 1147 (2012)

    MathSciNet  MATH  Google Scholar 

  57. Qian, F., Zhou, W., Kaluvan, S., Zhang, H., Zuo, L.: Theoretical modeling and experimental validation of a torsional piezoelectric vibration energy harvesting system. Smart Mater. Struct. 27(4), 045018 (2018)

    Google Scholar 

  58. Clough, R., Penzien, J.: Dynamics of Structures, 2nd edn. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  59. Kim, M., Hoegen, M., Dugundji, J., Wardle, B.L.: Modeling and experimental verification of proof mass effects on vibration energy harvester performance. Smart Mater. Struct. 19(4), 045023 (2010)

    Google Scholar 

  60. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  61. Lee, E.H.: The impact of a mass striking a beam. ASME J. Appl. Mech. 7, 129 (1940)

    MathSciNet  Google Scholar 

  62. Bishop, R.E.D., Johnson, D.C.: The Mechanics of Vibration. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  63. Cottone, F., Gammaitoni, L., Vocca, H., Ferrari, M., Ferrari, V.: Piezoelectric buckled beams for random vibration energy harvesting. Smart Mater. Struct. 21(3), 035021 (2012)

    Google Scholar 

  64. Li, H., Qin, W., Zu, J., Yang, Z.: Modeling and experimental validation of a buckled compressive-mode piezoelectric energy harvester. Nonlinear Dyn. 92(4), 1761 (2018)

    Google Scholar 

  65. Panyam, M., Daqaq, M.F., Emam, S.A.: Exploiting the subharmonic parametric resonances of a buckled beam for vibratory energy harvesting. Meccanica 53(14), 3545 (2018)

    Google Scholar 

  66. Daqaq, M.F., Masana, R., Erturk, A., Quinn, D.: Dane: On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. Appl. Mech. Rev. 66(4), 040801 (2014)

    Google Scholar 

  67. Zou, H., Zhang, W., Wei, K., Li, W., Peng, Z., Meng, G.: A compressive-mode wideband vibration energy harvester using a combination of bistable and flextensional mechanisms. J. Appl. Mech. 83(12), 121005 (2016)

    Google Scholar 

  68. Wang, W., Cao, J., Bowen, C.R., Zhang, Y., Lin, J.: Nonlinear dynamics and performance enhancement of asymmetric potential bistable energy harvesters. Nonlinear Dyn. 94(2), 1183 (2018)

    Google Scholar 

  69. Wang, G., Liao, W.H., Zhao, Z., Tan, J., Cui, S., Wu, H., Wang, W.: Nonlinear magnetic force and dynamic characteristics of a tri-stable piezoelectric energy harvester. Nonlinear Dyn. 97(4), 2371 (2019)

    Google Scholar 

  70. Huang, D., Zhou, S., Litak, G.: Analytical analysis of the vibrational tristable energy harvester with a RL resonant circuit. Nonlinear Dyn. 97(1), 663 (2019)

    MATH  Google Scholar 

  71. Huang, D., Zhou, S., Yang, Z.: Resonance mechanism of nonlinear vibrational multistable energy harvesters under narrow-band stochastic parametric excitations. Complexity 2019, 20 (2019)

    Google Scholar 

  72. Yang, K., Wang, J., Yurchenko, D.: A double-beam piezo-magneto-elastic wind energy harvester for improving the galloping-based energy harvesting. Appl. Phys. Lett. 115(19), 193901 (2019)

    Google Scholar 

  73. Jacquelin, E., Adhikari, S., Friswell, M.I.: A piezoelectric device for impact energy harvesting. Smart Mater. Struct. 20(10), 105008 (2011)

    Google Scholar 

  74. Zhang, Y., Lu, Y., Zhang, W., Teng, Y., Yang, H., Yang, T., Chen, L.: Nonlinear energy sink with inerter. Mech. Syst. Signal Process. 125, 52 (2019)

    Google Scholar 

  75. Kovacic, I., Brennan, M.J.: The Duffing Equation: Nonlinear Oscillators and Their Behaviour. Wiley, London (2011)

    MATH  Google Scholar 

  76. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, London (2008)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11802237), the Fundamental Research Funds for the Central Universities (Grant No. G2018KY0306), and the 111 Project (No. BP0719007), and the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. CUHK14205917). The support for Ms. Shitong Fang provided by Research Grants Council under the Hong Kong Ph.D. Fellowship Scheme is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengxi Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Matrices and vectors in the electromechanical model

Appendix A: Matrices and vectors in the electromechanical model

$$\begin{aligned} {{{\mathbf {M}}_{\mathrm{d}}}}= & {} {m_{\mathrm{d}}}\int _0^L {{\mathbf {\Phi }_{\mathrm{d}}^{2}(x_{\mathrm{d}})}} \mathrm{d}x_{\mathrm{d}} + {M_0}{{\mathbf {\Phi }_{\mathrm{d}}^{2}(L)}} \nonumber \\&+2{S_0}{{\mathbf {\Phi }_{\mathrm{d}}(L)}}{{\mathbf {\Phi }_{\mathrm{d}}^{'}(L)}} + {I_{\mathrm{t}}}{{\mathbf {\Phi }_{\mathrm{d}}^{'2}(L)}} \end{aligned}$$
(47)
$$\begin{aligned} {{{\mathbf {M}}_{\mathrm{u}}}}= & {} {m_{\mathrm{u}}}\int _0^h {{\mathbf {\Phi }_{\mathrm{u}}^{2}(x_{\mathrm{u}})}} \mathrm{d}x_{\mathrm{u}}; {{{\mathbf {M}}_{\mathrm{l}}}} = {m_{\mathrm{l}}}\int _0^h {{\mathbf {\Phi }_{\mathrm{l}}^{2}(x_{\mathrm{l}})}} \mathrm{d}x_\mathrm{l}\nonumber \\ \end{aligned}$$
(48)
$$\begin{aligned} {{{\mathbf {C}}_\mathrm{{d}}}}= & {} {c_{\mathrm{d}}}\int _0^L {{\mathbf {\Phi }_{\mathrm{d}}(x_{\mathrm{d}})}} \mathrm{d}x_{\mathrm{d}};{{{\mathbf {C}}_{\mathrm{u}}}} = {c_{\mathrm{u}} \int _0^h {{\mathbf {\Phi }_{\mathrm{u}}}(x_{\mathrm{u}})}} \mathrm{d}x_{\mathrm{u}};{{{\mathbf {C}}_{\mathrm{l}}}} \nonumber \\= & {} {c_{\mathrm{l}}}\int _0^h {{\mathbf {\Phi }_{\mathrm{l}}(x_{\mathrm{l}})}} \mathrm{d}x_{\mathrm{l}} \end{aligned}$$
(49)
$$\begin{aligned} {{{\mathbf {K}}_{\mathrm{d}}}}= & {} {{{\mathbf {M}}_{\mathrm{d}}}}\omega _{\mathrm{d}}^2; {{{\mathbf {K}}_{{\mathrm{u}}}}} ={{{\mathbf {M}}_{\mathrm{u}}}}\omega _{\mathrm{u}}^2; {{{\mathbf {K}}_{{\mathrm{l}}}}} ={{{\mathbf {M}}_{\mathrm{l}}}}\omega _{\mathrm{l}}^2 \end{aligned}$$
(50)
$$\begin{aligned} {\mathbf {\Lambda }_{\mathrm{d}}}= & {} {M_0}{{\mathbf {\Phi }_{\mathrm{d}}(L)}}+{m_{\mathrm{d}}}\int _0^L {{\mathbf {\Phi }_{\mathrm{d}}(x_{\mathrm{d}})}} \mathrm{d}x_{\mathrm{d}}+{S_0}{{\mathbf {\Phi }_{\mathrm{d}}^{'}(L)}}\nonumber \\ \end{aligned}$$
(51)
$$\begin{aligned} {\mathbf {\Lambda }_{\mathrm{u}}}= & {} {m_{\mathrm{u}}}\int _0^h {{\mathbf {\Phi }_{\mathrm{u}}(x_{\mathrm{u}})}} \mathrm{d}x_{\mathrm{u}};{\mathbf {\Lambda }_{\mathrm{l}}}={m_{\mathrm{l}}}\int _0^h {{\mathbf {\Phi }_{\mathrm{l}}(x_{\mathrm{l}})}} \mathrm{d}x_{\mathrm{l}} \end{aligned}$$
(52)
$$\begin{aligned} {\mathbf {\Theta }_{\mathrm{u}}}= & {} \frac{{w_{\mathrm{g}}}{(t_g+t_{\mathrm{p}})}{e_{31}}\int _0^{l_{\mathrm{p}}}{{\mathbf {\Phi }_{\mathrm{u}}^{''}(x_{\mathrm{u}})}}\mathrm{d}x_{\mathrm{u}}}{2}\end{aligned}$$
(53)
$$\begin{aligned} {\mathbf {\Theta }_{\mathrm{l}}}= & {} \frac{{w_{\mathrm{g}}}{(t_g+t_{\mathrm{p}})}{e_{31}}\int _0^{l_{\mathrm{p}}}{{\mathbf {\Phi }_{\mathrm{l}}^{''}(x_l)}}\mathrm{d}x_\mathrm{l}}{2} \end{aligned}$$
(54)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, S., Wang, S., Miao, G. et al. Comprehensive theoretical and experimental investigation of the rotational impact energy harvester with the centrifugal softening effect. Nonlinear Dyn 101, 123–152 (2020). https://doi.org/10.1007/s11071-020-05732-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05732-1

Keywords

Navigation