Skip to main content
Log in

Dynamics of microorganism cultivation with delay and stochastic perturbation

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In the microorganism cultivation process, delay and stochastic perturbations are inevitably accompanied, which results in complicated dynamical behaviors for microorganisms. In this paper, a mathematical model with discrete delay and random perturbation is constructed to understand how the dynamics of microorganisms in the turbidostat can be characterized. The existence, uniqueness and boundedness of the positive solution are first determined for the mathematical model. Furthermore, sufficient conditions for microorganism extinction and permanence in the turbidostat are obtained with the theory of stochastic differential equations. The system has the stationary distribution under a low-level intensity of stochastic perturbation from the environment; that is, microorganism in the turbidostat is persistent fluctuating around a positive value. On the contrary, microorganisms will be extinct with a strong enough intensity of noise. Several numerical simulations are applied to validate the theoretical results for the dynamics of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Andrews, J.: A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol. Bioeng. 10(6), 707–723 (1968)

    Google Scholar 

  2. Bush, A., Cook, A.: The effect of time delay and growth rate inhibition in the bacterial treatment of wastewater. J. Theor. Biol. 63(2), 385–395 (1976)

    Google Scholar 

  3. Cammarota, A., Miccio, M.: Competition of two microbial species in a turbidostat. Comput. Aided Chem. Eng. 28, 331–336 (2010)

    Google Scholar 

  4. Caperon, J.: Time lag in population growth response of isochrysis galbana to a variable nitrate environment. Ecology 50(2), 188–192 (1969)

    Google Scholar 

  5. Chen, S., Lou, Y., Wei, J.: Hopf bifurcation in a delayed reaction-diffusion-advection population model. J. Differ. Equ. 264(8), 5333–5359 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Contois, D.: Kinetics of bacterial growth: relationship between population density and specific growth rate of continuous cultures. Microbiology 21(1), 40–50 (1959)

    Google Scholar 

  7. Herbert, D., Elsworth, R., Telling, R.: The continuous culture of bacteria; a theoretical and experimental study. Microbiology 14(3), 601–622 (1956)

    Google Scholar 

  8. Higham, D.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43(3), 525–546 (2001)

    MathSciNet  MATH  Google Scholar 

  9. Hu, X., Li, Z., Xiang, X.: Feedback control for a turbidostat model with ratio-dependent growth rate. J. Appl. Math. Inform. 31(3–4), 385–398 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Hu, Z., Gao, G., Ma, W.: Dynamics of a three-species ratio-dependent diffusive model. Nonlinear Anal. Real 11(3), 2106–2114 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Imhof, L., Walcher, S.: Exclusion and persistence in deterministic and stochastic chemostat models. J. Differ. Equ. 217(1), 26–53 (2005)

    MathSciNet  MATH  Google Scholar 

  12. Ji, C., Jiang, D.: Threshold behaviour of a stochastic SIR model. Appl. Math. Model. 38(21–22), 5067–5079 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Khasminskii, R.: Stochastic Stability of Differential Equations. Springer, Berlin (2011)

    Google Scholar 

  14. Kuang, Y.: Delay Differential Equations: With Applications in Population Dynamics. Academic press, Cambridge (1993)

    MATH  Google Scholar 

  15. Li, B.: Competition in a turbidostat for an inhibitory nutrient. J. Biol. Dyn. 2(2), 208–220 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Li, Z., Chen, L.: Periodic solution of a turbidostat model with impulsive state feedback control. Nonlinear Dyn. 58(3), 525 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Li, Z., Mu, Y., Xiang, H., Wang, H.: Mean persistence and extinction for a novel stochastic turbidostat model. Nonlinear Dyn. 97, 185–202 (2019)

    MATH  Google Scholar 

  18. Li, Z., Xu, R.: Stability analysis of a ratio-dependent chemostat model with time delay and variable yield. Int. J. Biomath. 3(02), 243–253 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Liu, Q., Chen, Q., Jiang, D.: The threshold of a stochastic delayed SIR epidemic model with temporary immunity. Physica A 450, 115–125 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Lv, X., Meng, X., Wang, X.: Extinction and stationary distribution of an impulsive stochastic chemostat model with nonlinear perturbation. Chaos Soliton. Fract. 110, 273–279 (2018)

    MathSciNet  MATH  Google Scholar 

  21. MacDonald, N.: Time delay in simple chemostat models. Biotechnol. Bioeng. 18(6), 805–812 (1976)

    Google Scholar 

  22. Mao, X.: Stochastic Differential Equations and Applications. Elsevier, Amsterdam (2007)

    MATH  Google Scholar 

  23. May, R.: Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton (2001)

    MATH  Google Scholar 

  24. Monod, J.: The growth of bacterial cultures. Annu. Rev. Microbiol. 3(1), 371–394 (1949)

    Google Scholar 

  25. Mu, Y., Li, Z., Xiang, H., Wang, H.: Bifurcation analysis of a turbidostat model with distributed delay. Nonlinear Dyn. 90(2), 1315–1334 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Novick, A., Szilard, L.: Description of the chemostat. Science 112(2920), 715–716 (1950)

    Google Scholar 

  27. Smith, H.: An Introduction to Delay Differential Equations with Applications to the Life Sciences. Springer, New York (2011)

    MATH  Google Scholar 

  28. Smith, H., Waltman, P.: The Theory of the Chemostat: Dynamics of Microbial Competition. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  29. Stepan, G.: Great delay in a predator-prey model. Nonlinear Anal. Theor. 10(9), 913–929 (1986)

    MathSciNet  MATH  Google Scholar 

  30. Sun, S., Zhang, X.: Asymptotic behavior of a stochastic delayed chemostat model with nonmonotone uptake function. Physica A 512, 38–56 (2018)

    MathSciNet  Google Scholar 

  31. Sun, S., Zhang, X.: Asymptotic behavior of a stochastic delayed chemostat model with nutrient storage. J. Biol. Syst. 26(02), 225–246 (2018)

    MathSciNet  MATH  Google Scholar 

  32. Sykora, H., Bachrathy, D., Stepan, G.: Stochastic semi-discretization for linear stochastic delay differential equations. Int. J. Numer. Methods Eng. 119(9), 879–898 (2019)

    MathSciNet  Google Scholar 

  33. Tan, R., Liu, Z., Guo, S., Xiang, H.: On a nonautonomous competitive system subject to stochastic and impulsive perturbations. Appl. Math. Comput. 256, 702–714 (2015)

    MathSciNet  MATH  Google Scholar 

  34. Wang, L., Jiang, D.: A note on the stationary distribution of the stochastic chemostat model with general response functions. Appl. Math. Lett. 73, 22–28 (2017)

    MathSciNet  MATH  Google Scholar 

  35. Wang, L., Jiang, D.: Periodic solution for the stochastic chemostat with general response function. Physica A 486, 378–385 (2017)

    MathSciNet  Google Scholar 

  36. Wang, L., Jiang, D., Wolkowicz, G., O’Regan, D.: Dynamics of the stochastic chemostat with monod-haldane response function. Sci. Rep. UK 7(1), 13641 (2017)

    Google Scholar 

  37. Wang, L., Wolkowicz, G.: A delayed chemostat model with general nonmonotone response functions and differential removal rates. J. Math. Anal. Appl. 321(1), 452–468 (2006)

    MathSciNet  MATH  Google Scholar 

  38. Xu, C., Yuan, S.: An analogue of break-even concentration in a simple stochastic chemostat model. Appl. Math. Lett. 48, 62–68 (2015)

    MathSciNet  MATH  Google Scholar 

  39. Yao, Y.: Dynamics of a delay turbidostat system with contois growth rate. Math. Biosci. Eng. 16(1), 56–77 (2018)

    MathSciNet  Google Scholar 

  40. Yao, Y., Li, Z., Liu, Z.: Hopf bifurcation analysis of a turbidostat model with discrete delay. Appl. Math. Comput. 262, 267–281 (2015)

    MathSciNet  MATH  Google Scholar 

  41. Zhang, X., Yuan, R.: The existence of stationary distribution of a stochastic delayed chemostat model. Appl. Math. Lett. 93, 15–21 (2019)

    MathSciNet  MATH  Google Scholar 

  42. Zhao, D., Yuan, S.: Critical result on the break-even concentration in a single-species stochastic chemostat model. J. Math. Anal. Appl. 434(2), 1336–1345 (2016)

    MathSciNet  MATH  Google Scholar 

  43. Zhao, D., Yuan, S.: Sharp conditions for the existence of a stationary distribution in one classical stochastic chemostat. Appl. Math. Comput. 339, 199–205 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Zhao, D., Yuan, S., Liu, H.: Stochastic dynamics of the delayed chemostat with Lévy noises. Int. J. Biomath. 12(05), 1950056 (2019)

    MathSciNet  MATH  Google Scholar 

  45. Zhao, Y., Jiang, D.: The threshold of a stochastic SIS epidemic model with vaccination. Appl. Math. Comput. 243, 718–727 (2014)

    MathSciNet  MATH  Google Scholar 

  46. Zhao, Z., Song, X.: Bifurcation and complexity in a ratio-dependent predator-prey chemostat with pulsed input. Appl. Mat. Ser. 22(4), 379–387 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by a ECS grant from the Research Grants Council of Hong Kong (Project No. CityU 21303615) and a CityU Strategic Research Grant (Project No. CityU 11300518).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wing-Cheong Lo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, Y., Lo, WC. Dynamics of microorganism cultivation with delay and stochastic perturbation. Nonlinear Dyn 101, 501–519 (2020). https://doi.org/10.1007/s11071-020-05718-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05718-z

Keywords

Navigation