Skip to main content
Log in

Nonlinear waves behaviors for a coupled generalized nonlinear Schrödinger–Boussinesq system in a homogeneous magnetized plasma

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Under investigation in this paper is a coupled generalized nonlinear Schrödinger–Boussinesq system, which describes the coupled upper-hybrid and magnetoacoustic modes in a homogeneous magnetized plasma for the bidirectional propagation near the magnetoacoustic speed. Based on the Hirota method, the expressions for the multi-soliton solutions are given. Effects of the group velocity, group dispersion coefficient for the upper-hybrid, and the properties of the magnetic field on the soliton are discussed. Based on the asymptotic analysis, interaction between two solitons is proved to be elastic through the asymptotic analysis. Position at which the maximal distortion occurs is obtained. Multi-soliton interaction is illustrated and investigated. Two prerequisites of the formation and features of the bound state are discussed. For the cases of three solitons, inelastic interaction occurs with phase shifts. Characteristics of the breather and its relation with the bound state and the breather are investigated. Interaction between the bound state (even the breather) and a single soliton is discussed for both cases that they are parallel or not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

The data used to support the findings of this study are available from the corresponding author upon request.

Notes

  1. A single soliton composed of two separated solitons via the interaction.

References

  1. Wazwaz, A.M.: Two new integrable fourth-order nonlinear equations: multiple soliton solutions and multiple complex soliton solutions. Nonlinear Dyn. 94, 2655–2663 (2018)

    Google Scholar 

  2. Kaur, L., Wazwaz, A.M.: Painlevé analysis and invariant solutions of generalized fifth-order nonlinear integrable equation. Nonlinear Dyn. 94, 2469–2477 (2018)

    MATH  Google Scholar 

  3. Wazwaz, A.M., El-Tantawy, S.A.: New (3+1)-dimensional equations of Burgers type and Sharma-Tasso-Olver type: multiple-soliton solutions. Nonlinear Dyn. 87, 2457–2461 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Lan, Z.Z., Su, J.J.: Solitary and rogue waves with controllable backgrounds for the non-autonomous generalized AB system. Nonlinear Dyn. 96, 2535–2546 (2019)

    Google Scholar 

  5. Li, C.Z., He, J.S., Porsezian, K.: Rogue waves of the Hirota and the Maxwell-Bloch equations. Phys. Rev. E 87, 012913 (2013)

    Google Scholar 

  6. Das, G., Sarma, J.: Response to “Comment on ’A new mathematical approach for finding the solitary waves in dusty plasma”. Phys. Plasmas 6, 4394–4397 (1999)

    MathSciNet  Google Scholar 

  7. Xu, T., Li, J., Zhang, H.Q., Zhang, Y.X., Hu, W., Gao, Y.T., Tian, B.: Integrable aspects and applications of a generalized inhomogeneous \(N\)-coupled nonlinear Schrödinger system in plasmas and optical fibers via symbolic computation. Phys. Lett. A 372, 1990–2001 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Raven, A., Willi, O., Rumsby, P.T.: Megagauss magnetic field profiles in laser-produced plasmas. Phys. Rev. Lett. 41, 554 (1978)

    Google Scholar 

  9. Rao, N.N.: Near-magnetosonic envelope upper-hybrid waves. J. Plasma Phys. 39, 385–405 (1988)

    Google Scholar 

  10. Kaufman, A.N., Stenflo, L.: Upper-hybrid solitons. Phys. Scr. 11, 269 (1975)

    Google Scholar 

  11. Porkolab, M., Goldman, M.V.: Upper-hybrid solitons and oscillating-two-stream instabilities. Phys. Fluids 19, 872–881 (1976)

    MathSciNet  Google Scholar 

  12. Yu, M.Y., Shukla, P.K.: On the formation of upper-hybrid solitons. Plasma Phys. 19, 889 (1977)

    Google Scholar 

  13. Cho, T., Tanaka, S.: Observation of an upper-hybrid soliton. Phys. Rev. Lett. 45, 1403 (1980)

    Google Scholar 

  14. Hua, Y., Guo, B., Ma, W., Lü, X.: Interaction behavior associated with a generalized (2+1)-dimensional Hirota bilinear equation for nonlinear waves. Appl. Math. Model. 74, 184–198 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Xu, H., Ruan, W., Zhang, Y., Lü, X.: Multi-exponential wave solutions to two extended Jimbo-Miwa equations and the resonance behavior. Appl. Math. Lett. 9, 105976 (2020)

    MathSciNet  MATH  Google Scholar 

  16. Chen, S., Yin, Y., Ma, W., Lü, X.: Abundant exact solutions and interaction phenomena of the (2+1)-dimensional YTSF equation. Anal. Math. Phys. 99, 2329–2344 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Chen, S., Ma, W., Lü, X.: Bäcklund transformation, exact solutions and interaction behaviour of the (3+1)-dimensional Hirota-Satsuma-Ito-like equation. Commun. Nonlinear Sci. Numer. Simul. 83, 105135 (2020)

    MathSciNet  Google Scholar 

  18. Rao, N.N.: Integrability of coupled upper-hybrid and magnetoacoustic modes in a magnetized plasma. Phys. Scr. 63, 219 (1996)

    Google Scholar 

  19. Dysthe, K.B., Mjolhus, E., Pécseli, H.L., Stenflo, L.: Nonlinear electrostatic wave equations for magnetized plasmas: II. Plasma Phys. Contr. Fusion 27, 501 (1985)

    Google Scholar 

  20. Yao, R.X., Li, Z.B.: Exact explicit solutions of the nonlinear Schrödinger equation coupled to the Boussinesq equation. Acta Math. Sci. B 23, 453–460 (2003)

    MathSciNet  MATH  Google Scholar 

  21. Yajima, N., Satsuma, J.: Soliton solutions in a diatomic lattice system. Prog. Theor. Phys. 62, 370–378 (1979)

    Google Scholar 

  22. Cai, J., Chen, J., Yang, B.: Efficient energy-preserving wavelet collocation schemes for the coupled nonlinear Schrödinger-Boussinesq system. Appl. Math. Comput. 357, 1–11 (2019)

    MathSciNet  MATH  Google Scholar 

  23. Baleanu, D., Inc, M., Aliyu, A.I., Yusuf, A.: The investigation of soliton solutions and conservation laws to the coupled generalized Schrödinger-Boussinesq system. Waves Random Complex Media 29, 77–92 (2019)

    MathSciNet  Google Scholar 

  24. Zhang, X., Chen, Y.: General high-order rogue waves to nonlinear Schrödinger-Boussinesq equation with the dynamical analysis. Nonlinear Dyn. 93, 2169–2184 (2018)

    MATH  Google Scholar 

  25. Ray, S.S.: New double periodic exact solutions of the coupled Schrödinger-Boussinesq equations describing physical processes in laser and plasma physics. Chin. J. Phys. 55, 2039–2047 (2017)

    Google Scholar 

  26. Liao, F., Zhang, L., Wang, T.: Two energy-conserving and compact finite difference schemes for two-dimensional Schrödinger-Boussinesq equations. Numer. Algorithms 84, 1–29 (2020)

    MathSciNet  Google Scholar 

  27. Manafian, J., Aghdaei, M.F.: Abundant soliton solutions for the coupled Schrödinger-Boussinesq system via an analytical method. Eur. Phys. J. Plus 131, 97 (2016)

    Google Scholar 

  28. Hu, X.B., Guo, B.N., Tam, H.W.: Homoclinic orbits for the coupled Schrödinger-Boussinesq equation and coupled Higgs equation. J. Phys. Soc. Jpn. 72, 189–190 (2003)

    Google Scholar 

  29. Wang, C.J., Dai, Z.D., Liu, C.F.: From a breather homoclinic wave to a rogue wave solution for the coupled Schrödinger-Boussinesq equation. Phys. Scr. 89, 075206 (2014)

    Google Scholar 

  30. Hong, B., Lu, D.: New exact Jacobi elliptic function solutions for the coupled Schrödinger-Boussinesq equations. J. Appl. Math. 2013, 170835 (2013)

    MATH  Google Scholar 

  31. Hon, Y.C., Fan, E.G.: A series of exact solutions for coupled Higgs field equation and coupled Schrödinger-Boussinesq equation. Nonlinear Anal. 71, 3501–3508 (2009)

    MathSciNet  MATH  Google Scholar 

  32. Jiang, M.R., Dai, Z.D.: Various heteroclinic solutions for the coupled Schrödinger-Boussinesq equation. Abstr. Appl. Anal. 2013, 1–5 (2013)

    MATH  Google Scholar 

  33. Saha, P., Banerjee, S., Chowdhury, A.R.: Some aspects of synchronization and chaos in a coupled laser system. Chaos Soliton. Fract. 14, 1083–1093 (2002)

    MathSciNet  MATH  Google Scholar 

  34. Chanda, P.K., Chowdhury, A.R.: On a Painlevé test of a coupled system of Boussinesq and Schrödinger equations. J. Math. Phys. 29, 843–850 (1988)

    MathSciNet  MATH  Google Scholar 

  35. Hase, Y., Satsuma, J.: An N-soliton solution for the nonlinear Schrödinger equation coupled to the Boussinesq equation. J. Phys. Soc. Jpn. 57, 679–682 (1988)

    Google Scholar 

  36. Chowdhury, A.R., Rao, N.N.: Painlevé analysis and Bäcklund transformations for coupled generalized Schrödinger-Boussinesq system. Chaos Soliton. Fract. 9, 1747–1753 (1998)

    MATH  Google Scholar 

  37. Rao, N.N.: Hénon-Heiles Hamiltonian for coupled upper-hybrid and magnetoacoustic waves in magnetized plasmas. Phys. Lett. A 202, 383–388 (1995)

    Google Scholar 

  38. Li, M., Xiao, J.H., Qin, B., Wang, M., Tian, B.: Vector-soliton bound states for the coupled mixed derivative nonlinear Schrödinger equations in optical fibers. Wave Motion 50, 1–10 (2013)

    MathSciNet  MATH  Google Scholar 

  39. Haelterman, M., Sheppard, A.: Bifurcation phenomena and multiple soliton-bound states in isotropic Kerr media. Phys. Rev. E 49, 3376 (1994)

    MathSciNet  Google Scholar 

  40. Sun, Z.Y., Gao, Y.T., Yu, X., Liu, W.J., Liu, Y.: Bound vector solitons and soliton complexes for the coupled nonlinear Schrödinger equations. Phys. Rev. E 80, 066608 (2009)

    Google Scholar 

  41. Adachi, S., Kobryanskii, V.M., Kobayashi, T.: Excitation of a breather mode of bound soliton pairs in trans-polyacetylene by sub-five-femtosecond optical pulses. Phys. Rev. Lett. 89, 027401 (2002)

    Google Scholar 

  42. Liu, X., Yao, X., Cui, Y.: Real-time observation of the buildup of soliton molecules. Phys. Rev. Lett. 121, 023905 (2018)

    Google Scholar 

  43. Zhang, Z., Yang, X., Li, B.: Soliton molecules and novel smooth positons for the complex modified KdV equation. Appl. Math. Lett. 103, 106168 (2020)

    MathSciNet  MATH  Google Scholar 

  44. Zhang, Z., Yang, X., Li, B.: Novel soliton molecules and breather-positon on zero background for the complex modified KdV equation. Nonlinear Dyn. 100, 1551–1557 (2020)

    Google Scholar 

  45. Yang, X., Fan, R., Li, B.: Soliton molecules and some novel interaction solutions to the (2+1)-dimensional B-type Kadomtsev-Petviashvili equation. Phys. Scr. 95, 045213 (2020)

    Google Scholar 

  46. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  47. Newell, A.C.: Solitons in Mathematics and Physics. SIAM, Philadelphia (1985)

    MATH  Google Scholar 

  48. Mel’nikov, V.K.: Reflection of waves in nonlinear integrable systems. J. Math. Phys. 28, 2603–2609 (1987)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to all the members of our discussion group for their valuable comments. This work has been supported by the Science Research Project of Higher Education in Inner Mongolia Autonomous Region under Grant No. NJZZ18117, by the Natural Science Foundation of Inner Mongolia Autonomous Region under Grant No. 2018BS01004, by the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region under Grant No. NJYT-19-B21, and by the China Postdoctoral Science Foundation under Grant Nos. 2018M640094 and 2019T120070.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Zhou Lan.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, ZZ., Guo, BL. Nonlinear waves behaviors for a coupled generalized nonlinear Schrödinger–Boussinesq system in a homogeneous magnetized plasma. Nonlinear Dyn 100, 3771–3784 (2020). https://doi.org/10.1007/s11071-020-05716-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05716-1

Keywords

Navigation